skip to main content
research-article
Open Access

DeltaConv: anisotropic operators for geometric deep learning on point clouds

Authors Info & Claims
Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Learning from 3D point-cloud data has rapidly gained momentum, motivated by the success of deep learning on images and the increased availability of 3D data. In this paper, we aim to construct anisotropic convolution layers that work directly on the surface derived from a point cloud. This is challenging because of the lack of a global coordinate system for tangential directions on surfaces. We introduce DeltaConv, a convolution layer that combines geometric operators from vector calculus to enable the construction of anisotropic filters on point clouds. Because these operators are defined on scalar- and vector-fields, we separate the network into a scalar- and a vector-stream, which are connected by the operators. The vector stream enables the network to explicitly represent, evaluate, and process directional information. Our convolutions are robust and simple to implement and match or improve on state-of-the-art approaches on several benchmarks, while also speeding up training and inference.

Skip Supplemental Material Section

Supplemental Material

3528223.3530166.mp4

presentation

References

  1. Matan Atzmon, Haggai Maron, Yaron Lipman, Atzmon Matan, Maron Haggai, and Lipman Yaron. 2018. Point convolutional neural networks by extension operators. ACM Trans. Graph. 37, 4 (2018), 71:1--71:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 2018. 3DmFV: Three-Dimensional Point Cloud Classification in Real-Time Using Convolutional Neural Networks. IEEE Robotics and Automation Letters 3 (2018), 3145--3152.Google ScholarGoogle ScholarCross RefCross Ref
  3. Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016. Learning shape correspondence with anisotropic convolutional neural networks. NeurIPS (2016).Google ScholarGoogle Scholar
  4. Alexandre Boulch. 2020. ConvPoint: Continuous convolutions for point cloud processing. Comput. Graph. Forum 88 (2020), 24--34.Google ScholarGoogle ScholarCross RefCross Ref
  5. Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2017. Spectral Processing of Tangential Vector Fields. Computer Graphics Forum 36, 6 (2017), 338--353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021).Google ScholarGoogle Scholar
  7. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 34 (2017), 18--42.Google ScholarGoogle ScholarCross RefCross Ref
  8. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral Networks and Locally Connected Networks on Graphs. ICLR (2014).Google ScholarGoogle Scholar
  9. Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012.Google ScholarGoogle Scholar
  10. Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying, Danny Z Chen, and Jian Wu. 2020. A Hierarchical Graph Network for 3D Object Detection on Point Clouds. CVPR (2020).Google ScholarGoogle Scholar
  11. Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR (2019).Google ScholarGoogle Scholar
  12. Taco Cohen, Mario Geiger, Jonas Koehler, and Max Welling. 2018. Spherical CNNs. ICLR (2018).Google ScholarGoogle Scholar
  13. Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. 2019. Gauge Equivariant Convolutional Networks and the Icosahedral CNN. ICML (2019).Google ScholarGoogle Scholar
  14. Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schroder. 2013a. Digital Geometry Processing with Discrete Exterior Calculus. SIGGRAPH Asia 2013 Courses (2013), 7:1--7:126.Google ScholarGoogle Scholar
  15. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013), 152:1--152:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. 2017. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR (2017).Google ScholarGoogle Scholar
  17. Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector Field Processing on Triangle Meshes. SIGGRAPH Asia 2016 Courses (2016), 27:1--27:49.Google ScholarGoogle Scholar
  18. Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling. 2021. Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs. ICLR (2021).Google ScholarGoogle Scholar
  19. C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. Guibas. 2021. Vector Neurons: A General Framework for SO(3)-Equivariant Networks. In ICCV.Google ScholarGoogle Scholar
  20. Miguel Dominguez, Rohan Dhamdhere, Atir Petkar, Saloni Jain, Shagan Sah, and Raymond Ptucha. 2018. General-Purpose Deep Point Cloud Feature Extractor. WACV (2018).Google ScholarGoogle Scholar
  21. Moshe Eliasof and Eran Treister. 2020. DiffGCN: Graph Convolutional Networks via Differential Operators and Algebraic Multigrid Pooling. NeurIPS (2020).Google ScholarGoogle Scholar
  22. Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. 2017. Learning SO(3) Equivariant Representations with Spherical CNNs. ECCV (2017).Google ScholarGoogle Scholar
  23. Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hypergraph neural networks. AAAI (2019).Google ScholarGoogle Scholar
  24. Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. ICLR Workshop on Representation Learning on Graphs and Manifolds (2019).Google ScholarGoogle Scholar
  25. Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. 2018. SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels. CVPR (2018).Google ScholarGoogle Scholar
  26. Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. 2020. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurIPS (2020).Google ScholarGoogle Scholar
  27. Jan E Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson. 2021. Geometric deep learning and equivariant neural networks. arXiv preprint arXiv:2105.13926 (2021).Google ScholarGoogle Scholar
  28. Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. 2021. Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline. ICML (2021).Google ScholarGoogle Scholar
  29. Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 2018. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. CVPR (2018).Google ScholarGoogle Scholar
  30. Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. 2020. Deep Learning for 3D Point Clouds: A Survey. IEEE TPAMI 43 (2020), 4338--4364.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Trans. Graph. 38, 4 (2019), 90:1--90:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. CVPR (2016).Google ScholarGoogle Scholar
  33. Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski. 2018. Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds. ACM Trans. Graph. 37, 6 (2018), 235:1--235:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung. 2016. SceneNN: A Scene Meshes Dataset with aNNotations. 3DV (2016).Google ScholarGoogle Scholar
  35. Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. 2018. Pointwise Convolutional Neural Networks. CVPR (2018).Google ScholarGoogle Scholar
  36. Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Chiyu Max Jiang, Jingwei Huang, Karthik Kashinath, Prabhat, Philip Marcus, and Matthias Nießner. 2019. Spherical CNNs on Unstructured Grids. ICLR (2019).Google ScholarGoogle Scholar
  38. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.Google ScholarGoogle Scholar
  39. Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. ICLR (2017).Google ScholarGoogle Scholar
  40. Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2018. Surface Networks. CVPR (2018).Google ScholarGoogle Scholar
  41. Alon Lahav and A. Tal. 2020. MeshWalker: deep mesh understanding by random walks. ACM Trans. Graph. 39, 6 (2020), 263:1--263:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Shiyi Lan, Ruichi Yu, Gang Yu, and L Davis. 2019. Modeling Local Geometric Structure of 3D Point Clouds Using Geo-CNN. CVPR (2019).Google ScholarGoogle Scholar
  43. Eric-Tuan Le, Iasonas Kokkinos, and Niloy J Mitra. 2020. Going Deeper With Lean Point Networks. CVPR (2020).Google ScholarGoogle Scholar
  44. Huan Lei, Naveed Akhtar, and Ajmal Mian. 2019. Octree guided CNN with Spherical Kernels for 3D Point Clouds. CVPR (2019).Google ScholarGoogle Scholar
  45. Yangyan Li, Bu Rui, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. 2018. PointCNN: Convolution on x-transformed points. NeurIPS (2018).Google ScholarGoogle Scholar
  46. Zhouhui et al. Lian. 2011. SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes. Eurographics Workshop on 3D Object Retrieval (01 2011), 79--88.Google ScholarGoogle Scholar
  47. Jian Liang and Hongkai Zhao. 2013. Solving Partial Differential Equations on Point Clouds. SIAM J. Sci. Comput. 35 (2013), A1461--A1486.Google ScholarGoogle ScholarCross RefCross Ref
  48. Liqiang Lin, Pengdi Huang, Chi-Wing Fu, Kai Xu, Hao Zhang, and Hui Huang. 2020. One Point is All You Need: Directional Attention Point for Feature Learning. arXiv preprint arXiv:2012.06257 (2020).Google ScholarGoogle Scholar
  49. Hsueh-Ti Derek Liu, Alec Jacobson, and Keenan Crane. 2017. A Dirac Operator for Extrinsic Shape Analysis. Comput. Graph. Forum 36, 5 (2017), 139--149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Jinxian Liu, Bingbing Ni, Caiyuan Li, Jiancheng Yang, and Qi Tian. 2019c. Dynamic Points Agglomeration for Hierarchical Point Sets Learning. ICCV (2019).Google ScholarGoogle Scholar
  51. Weiping Liu, Jia Sun, Wanyi Li, Ting Hu, and Peng Wang. 2019d. Deep Learning on Point Clouds and Its Application: A Survey. Sens 19 (2019), 4188.Google ScholarGoogle ScholarCross RefCross Ref
  52. Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong Pan. 2019a. DensePoint: Learning densely contextual representation for efficient point cloud processing. ICCV (2019).Google ScholarGoogle Scholar
  53. Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. 2019b. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. CVPR (2019).Google ScholarGoogle Scholar
  54. Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. 2020. A Closer Look at Local Aggregation Operators in Point Cloud Analysis. ECCV (2020).Google ScholarGoogle Scholar
  55. Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR (2017).Google ScholarGoogle Scholar
  56. Tao Lu, Limin Wang, and Gangshan Wu. 2021. CGA-Net: Category Guided Aggregation for Point Cloud Semantic Segmentation. CVPR (2021).Google ScholarGoogle Scholar
  57. Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and Luca Carlone. 2020. Primal-Dual Mesh Convolutional Neural Networks. NeurIPS (2020).Google ScholarGoogle Scholar
  58. Thomas W. Mitchel, Vladimir G. Kim, and Michael Kazhdan. 2021. Field Convolutions for Surface CNNs. ICCV (2021).Google ScholarGoogle Scholar
  59. Andrew Nealen. 2004. An As-Short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation. URL: http://www.nealen.com/projects/mls/asapmls.pdf 1 (2004).Google ScholarGoogle Scholar
  60. B. O'Neill. 1983. Semi-Riemannian Geometry With Applications to Relativity. Elsevier Science.Google ScholarGoogle Scholar
  61. Guanghua Pan, Jun Wang, Rendong Ying, and Peilin Liu. 2018. 3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN. arXiv preprint arXiv:1812.06254 (2018).Google ScholarGoogle Scholar
  62. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. NeurIPS (2019).Google ScholarGoogle Scholar
  63. P Perona and J Malik. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE TPAMI 12, 7 (1990), 629--639.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Adrien Poulenard and Maks Ovsjanikov. 2018. Multi-directional geodesic neural networks via equivariant convolution. ACM Trans. Graph. 37, 6 (2018), 236:1--236:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, and Maks Ovsjanikov. 2019. Effective Rotation-invariant Point CNN with Spherical Harmonics kernels. 3DV (2019).Google ScholarGoogle Scholar
  66. Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. PointNet: Deep learning on point sets for 3D classification and segmentation. CVPR (2017).Google ScholarGoogle Scholar
  67. Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. PointNet++: Deep hierarchical feature learning on point sets in a metric space. NeurIPS (2017).Google ScholarGoogle Scholar
  68. Shi Qiu, Saeed Anwar, and Nick Barnes. 2021a. Dense-Resolution Network for Point Cloud Classification and Segmentation. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2021).Google ScholarGoogle ScholarCross RefCross Ref
  69. Shi Qiu, Saeed Anwar, and Nick Barnes. 2021b. Geometric Back-projection Network for Point Cloud Classification. arXiv preprint arXiv:1911.12885 (2021).Google ScholarGoogle Scholar
  70. Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. 2021. Diffusion-Net: Discretization Agnostic Learning on Surfaces. ACM Trans. Graph. 41, 3 (2021), 27:1--27:16.Google ScholarGoogle Scholar
  71. Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. 2018. Mining point cloud local structures by kernel correlation and graph pooling. CVPR (2018).Google ScholarGoogle Scholar
  72. Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned filters in convolutional neural networks on graphs. CVPR (2017).Google ScholarGoogle Scholar
  73. Dmitriy Smirnov and Justin Solomon. 2021. HodgeNet: Learning Spectral Geometry on Triangle Meshes. ACM Trans. Graph. 40, 4 (2021), 166:1--166:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Xiao Sun, Zhouhui Lian, and Jianguo Xiao. 2019. SRINet: Learning Strictly Rotation-Invariant Representations for Point Cloud Classification and Segmentation. ACM International Conference on Multimedia (2019), 980--988.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo. 2018. RGCNN: Regularized graph CNN for point cloud segmentation. ACM International Conference on Multimedia (2018), 746--754.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and Leonidas J Guibas. 2019. KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV (2019).Google ScholarGoogle Scholar
  77. Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. 2018. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds. arXiv preprint arXiv:1802.08219 (2018).Google ScholarGoogle Scholar
  78. Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Yeung. 2019. Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data. ICCV (2019).Google ScholarGoogle Scholar
  79. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. NeurIPS (2017).Google ScholarGoogle Scholar
  80. Chu Wang, Babak Samari, and Kaleem Siddiqi. 2018. Local spectral graph convolution for point set feature learning. ECCV (2018).Google ScholarGoogle Scholar
  81. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. 2019. Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38, 5 (2019), 146:1--146:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Max Wardetzky. 2006. Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation. Ph.D. Dissertation. Freie Universiät Berlin.Google ScholarGoogle Scholar
  83. Joachim Weickert. 1998. Anisotropic diffusion in image processing. Vol. 1.Google ScholarGoogle Scholar
  84. Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. 2021. Coordinate Independent Convolutional Networks - Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds. arXiv preprint arXiv:2106.06020 (2021).Google ScholarGoogle Scholar
  85. Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt. 2020. CNNs on surfaces using rotation-equivariant features. ACM Trans. Graph. 4 (2020), 92:1--92:12.Google ScholarGoogle Scholar
  86. Wenxuan Wu, Zhongang Qi, and Li Fuxin. 2019. PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR (2019).Google ScholarGoogle Scholar
  87. Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric shapes. CVPR (2015).Google ScholarGoogle Scholar
  88. Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. 2021. Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis. ICCV (2021).Google ScholarGoogle Scholar
  89. Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. 2021a. PAConv: Position Adaptive Convolution With Dynamic Kernel Assembling on Point Clouds. CVPR (2021).Google ScholarGoogle Scholar
  90. Mutian Xu, Junhao Zhang, Zhipeng Zhou, Mingye Xu, Xiaojuan Qi, and Yu Qiao. 2021b. Learning Geometry-Disentangled Representation for Complementary Understanding of 3D Object Point Cloud. AAAI (2021).Google ScholarGoogle Scholar
  91. Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. 2018. SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters. ECCV (2018).Google ScholarGoogle Scholar
  92. Jiancheng Yang, Qiang Zhang, B Ni, L Li, J Liu, Mengdie Zhou, and Q Tian. 2019. Modeling Point Clouds With Self-Attention and Gumbel Subset Sampling. CVPR (2019).Google ScholarGoogle Scholar
  93. Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active Framework for Region Annotation in 3D Shape Collections. ACM Trans. Graph. 35, 6 (2016), 210:1--210:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Cheng Zhang, Haocheng Wan, Shengqiang Liu, Xinyi Shen, and Zizhao Wu. 2021. PVT: Point-Voxel Transformer for 3D Deep Learning. arXiv preprint arXiv:2108.06076 (2021).Google ScholarGoogle Scholar
  95. Kuangen Zhang, Ming Hao, Jing Wang, Clarence W de Silva, and Chenglong Fu. 2019. Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features. arXiv preprint arXiv:1904.10014 (2019).Google ScholarGoogle Scholar
  96. Yingxue Zhang and Michael Rabbat. 2018. A Graph-CNN for 3D point cloud classification. ICASSP (2018), 6279--6283.Google ScholarGoogle Scholar
  97. Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. 2019. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. CVPR (2019).Google ScholarGoogle Scholar
  98. Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. 2021. Point Transformer. ICCV (2021).Google ScholarGoogle Scholar

Index Terms

  1. DeltaConv: anisotropic operators for geometric deep learning on point clouds

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader