skip to main content
research-article
Open Access

EARS: efficiency-aware russian roulette and splitting

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Russian roulette and splitting are widely used techniques to increase the efficiency of Monte Carlo estimators. But, despite their popularity, there is little work on how to best apply them. Most existing approaches rely on simple heuristics based on, e.g., surface albedo and roughness. Their efficiency often hinges on user-controlled parameters. We instead iteratively learn optimal Russian roulette and splitting factors during rendering, using a simple and lightweight data structure. Given perfect estimates of variance and cost, our fixed-point iteration provably converges to the optimal Russian roulette and splitting factors that maximize the rendering efficiency. In our application to unidirectional path tracing, we achieve consistent and significant speed-ups over the state of the art.

Skip Supplemental Material Section

Supplemental Material

3528223.3530168.mp4

References

  1. Attila T. Áfra. 2019. Intel® Open Image Denoise. https://www.openimagedenoise.org/.Google ScholarGoogle Scholar
  2. James Arvo and David Kirk. 1990. Particle transport and image synthesis. SIGGRAPH '90, 63--66.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Stefan Banach. 1922. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. math 3, 1 (1922), 133--181.Google ScholarGoogle Scholar
  4. Vasile Berinde. 2007. Iterative approximation of fixed points. Vol. 1912. Springer.Google ScholarGoogle Scholar
  5. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/Google ScholarGoogle Scholar
  6. Mark R Bolin and Gary W Meyer. 1997. An error metric for Monte Carlo ray tracing. In Eurographics Workshop on Rendering Techniques. Springer, 57--68.Google ScholarGoogle ScholarCross RefCross Ref
  7. Xi Deng, Miloš Hašan, Nathan Carr, Zexiang Xu, and Steve Marschner. 2021. Path graphs: iterative path space filtering. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (2012), 192--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Bennett Battaile. 1984. Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH computer graphics 18, 3 (1984), 213--222.Google ScholarGoogle Scholar
  10. Pascal Grittmann, Iliyan Georgiev, and Philipp Slusallek. 2021. Correlation-Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms. Comput. Graph. Forum (EG 2021) 40, 2 (2021).Google ScholarGoogle Scholar
  11. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (TOG) 31, 6 (2012), 191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J.M. Hammersley and D.C. Handscomb. 1968. Monte Carlo Methods. Springer, Dordrecht.Google ScholarGoogle Scholar
  13. Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P. A. Lensch, and Jaroslav Křivánek. 2019. Volume Path Guiding Based on Zero-Variance Random Walk Theory. ACM Trans. Graph. 38, 3, Article 25 (June 2019), 19 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  15. James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. David Kirk and James Arvo. 1991. Unbiased Sampling Techniques for Image Synthesis. ACM Trans. Graph. (SIGGRAPH '91) 25, 4 (jul 1991), 153--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. 93 (Dec. 1993), 145--153.Google ScholarGoogle Scholar
  18. Thomas Müller, Markus H. Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Comput. Graph. Forum 36 (2017), 91--100.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation. Morgan Kaufmann.Google ScholarGoogle Scholar
  20. Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Comput. Graph. Forum 34, 4 (jul 2015), 75--86.Google ScholarGoogle Scholar
  21. Alexander Rath, Pascal Grittmann, Sebastian Herholz, Philippe Weier, and Philipp Slusallek. 2022. Implementation of EARS: Efficiency-Aware Russian Roulette and Splitting. Google ScholarGoogle ScholarCross RefCross Ref
  22. Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2019. Optimal Deterministic Mixture Sampling.. In Eurographics (Short Papers). 73--76.Google ScholarGoogle Scholar
  23. László Szirmay-Kalos. 2005. Go with the winners strategy in path tracing. © Journal of WSCG, 2005, vol. 13, núm. 1--3, p. 49--56 (2005).Google ScholarGoogle Scholar
  24. László Szécsi, László Szirmay-Kalos, and Csaba Kelemen. 2003. Variance Reduction for Russian-roulette.Google ScholarGoogle Scholar
  25. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Stanford University PhD thesis.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145--167.Google ScholarGoogle Scholar
  27. Eric Veach and Leonidas J Guibas. 1995b. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In SIGGRAPH '95. ACM, 419--428.Google ScholarGoogle Scholar
  28. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. (Proceedings of SIGGRAPH 2014) 33, 4 (2014).Google ScholarGoogle Scholar
  29. Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-driven Russian Roulette and Splitting in Light Transport Simulation. ACM Trans. Graph. 35, 4, Article 42 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. In Computer graphics forum, Vol. 34. Wiley Online Library, 667--681.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. EARS: efficiency-aware russian roulette and splitting

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader