skip to main content
research-article
Open Access

NeROIC: neural rendering of objects from online image collections

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We present a novel method to acquire object representations from online image collections, capturing high-quality geometry and material properties of arbitrary objects from photographs with varying cameras, illumination, and backgrounds. This enables various object-centric rendering applications such as novel-view synthesis, relighting, and harmonized background composition from challenging in-the-wild input. Using a multi-stage approach extending neural radiance fields, we first infer the surface geometry and refine the coarsely estimated initial camera parameters, while leveraging coarse foreground object masks to improve the training efficiency and geometry quality. We also introduce a robust normal estimation technique which eliminates the effect of geometric noise while retaining crucial details. Lastly, we extract surface material properties and ambient illumination, represented in spherical harmonics with extensions that handle transient elements, e.g. sharp shadows. The union of these components results in a highly modular and efficient object acquisition framework. Extensive evaluations and comparisons demonstrate the advantages of our approach in capturing high-quality geometry and appearance properties useful for rendering applications.

Skip Supplemental Material Section

Supplemental Material

3528223.3530177.mp4
056-730-supp-video.mp4

supplemental material

References

  1. Alexander W. Bergman, Petr Kellnhofer, and Gordon Wetzstein. 2021. Fast Training of Neural Lumigraph Representations using Meta Learning. In NeurIPS.Google ScholarGoogle Scholar
  2. Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sulkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition. https://arxiv.org/abs/2008.03824 (2020).Google ScholarGoogle Scholar
  3. Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P. A. Lensch. 2021a. NeRD: Neural Reflectance Decomposition from Image Collections. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 12664--12674. Google ScholarGoogle ScholarCross RefCross Ref
  4. Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan T. Barron, and Hendrik P. A. Lensch. 2021b. Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition. CoRR abs/2110.14373 (2021). arXiv:2110.14373 https://arxiv.org/abs/2110.14373Google ScholarGoogle Scholar
  5. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings of the Neural Information Processing Systems Conference. 2672--2680.Google ScholarGoogle Scholar
  6. Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas Funkhouser. 2020. Object-Centric Neural Scene Rendering. arXiv preprint arXiv:2012.08503 (2020).Google ScholarGoogle Scholar
  7. Wonbong Jang and Lourdes Agapito. 2021. CodeNeRF: Disentangled Neural Radiance Fields for Object Categories. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 12949--12958.Google ScholarGoogle ScholarCross RefCross Ref
  8. Yoonwoo Jeong, Seokjun Ahn, Christopher B. Choy, Animashree Anandkumar, Minsu Cho, and Jaesik Park. 2021. Self-Calibrating Neural Radiance Fields. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 5826--5834. Google ScholarGoogle ScholarCross RefCross Ref
  9. Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon Wetzstein. 2021. Neural Lumigraph Rendering. In CVPR.Google ScholarGoogle Scholar
  10. Ira Kemelmacher-Shlizerman and Steven M. Seitz. 2011. Face reconstruction in the wild. In 2011 International Conference on Computer Vision. 1746--1753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Alex Kendall and Yarin Gal. 2017. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4--9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5574--5584. https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.htmlGoogle ScholarGoogle Scholar
  12. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7--9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980Google ScholarGoogle Scholar
  13. Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. 2021. Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 6498--6508. https://openaccess.thecvf.com/content/CVPR2021/html/Li_Neural_Scene_Flow_Fields_for_Space-Time_View_Synthesis_of_Dynamic_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  14. Shu Liang, Linda G Shapiro, and Ira Kemelmacher-Shlizerman. 2016. Head Reconstruction from Internet Photos. In European Conference on Computer Vision. Springer, 360--374.Google ScholarGoogle ScholarCross RefCross Ref
  15. Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. 2021b. BARF: Bundle-Adjusting Neural Radiance Fields. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 5721--5731. Google ScholarGoogle ScholarCross RefCross Ref
  16. Yen-Chen Lin, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi Lin. 2021a. iNeRF: Inverting Neural Radiance Fields for Pose Estimation. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 - Oct. 1, 2021. IEEE, 1323--1330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein. 2021. AutoInt: Automatic Integration for Fast Neural Volume Rendering. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 14556--14565. https://openaccess.thecvf.com/content/CVPR2021/html/Lindell_AutoInt_Automatic_Integration_for_Fast_Neural_Volume_Rendering_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  18. Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural sparse voxel fields. In Advances in Neural Information Processing Systems (NeurIPS), Vol. 33.Google ScholarGoogle Scholar
  19. Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 7210--7219. https://openaccess.thecvf.com/content/CVPR2021/html/Martin-Brualla_NeRF_in_the_Wild_Neural_Radiance_Fields_for_Unconstrained_Photo_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  20. Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-Brualla. 2019. Neural rerendering in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6878--6887.Google ScholarGoogle ScholarCross RefCross Ref
  21. Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision. Springer, 405--421.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. 2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks. Comput. Graph. Forum 40, 4 (2021), 45--59. Google ScholarGoogle ScholarCross RefCross Ref
  23. Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. 2019. HoloGAN: Unsupervised learning of 3D representations from natural images. CoRR abs/1904.01326 (2019).Google ScholarGoogle Scholar
  24. Michael Niemeyer and Andreas Geiger. 2021. GIRAFFE: Representing Scenes As Compositional Generative Neural Feature Fields. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 11453--11464. https://openaccess.thecvf.com/content/CVPR2021/html/Niemeyer_GIRAFFE_Representing_Scenes_As_Compositional_Generative_Neural_Feature_Fields_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  25. Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B. Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021. HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph. 40, 6 (2021), 238:1--238:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  27. Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6 (1975), 311--317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. 2021. D-NeRF: Neural Radiance Fields for Dynamic Scenes. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 10318--10327. https://openaccess.thecvf.com/content/CVPR2021/html/Pumarola_D-NeRF_Neural_Radiance_Fields_for_Dynamic_Scenes_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  29. Ravi Ramamoorthi and Pat Hanrahan. 2001. A signal-processing framework for inverse rendering. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12--17, 2001, Lynn Pocock (Ed.). ACM, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 14315--14325. Google ScholarGoogle ScholarCross RefCross Ref
  31. Viktor Rudnev, Mohamed Elgharib, William A. P. Smith, Lingjie Liu, Vladislav Golyanik, and Christian Theobalt. 2021. Neural Radiance Fields for Outdoor Scene Relighting. CoRR abs/2112.05140 (2021). arXiv:2112.05140 https://arxiv.org/abs/2112.05140Google ScholarGoogle Scholar
  32. Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion Revisited. In CVPR.Google ScholarGoogle Scholar
  33. Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. Graf: Generative radiance fields for 3D-aware image synthesis. In Advances in Neural Information Processing Systems (NeurIPS), Vol. 33.Google ScholarGoogle Scholar
  34. Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2008. Modeling the World from Internet Photo Collections. Int. J. Comput. Vis. 80, 2 (2008), 189--210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron. 2021. NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 7495--7504. https://openaccess.thecvf.com/content/CVPR2021/html/Srinivasan_NeRV_Neural_Reflectance_and_Visibility_Fields_for_Relighting_and_View_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  36. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdfGoogle ScholarGoogle Scholar
  37. Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas A. Funkhouser. 2021a. IBRNet: Learning Multi-View Image-Based Rendering. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 4690--4699. https://openaccess.thecvf.com/content/CVPR2021/html/Wang_IBRNet_Learning_Multi-View_Image-Based_Rendering_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  38. Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. 2021b. NeRF-: Neural Radiance Fields Without Known Camera Parameters. https://arxiv.org/abs/2102.07064 (2021).Google ScholarGoogle Scholar
  39. Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. 2021. SpaceTime Neural Irradiance Fields for Free-Viewpoint Video. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 9421--9431. https://openaccess.thecvf.com/content/CVPR2021/html/Xian_Space-Time_Neural_Irradiance_Fields_for_Free-Viewpoint_Video_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  40. Christopher Xie, Keunhong Park, Ricardo Martin-Brualla, and Matthew Brown. 2021. FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category Modelling. In International Conference on 3D Vision (3DV).Google ScholarGoogle ScholarCross RefCross Ref
  41. Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui. 2021. Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 13759--13768. Google ScholarGoogle ScholarCross RefCross Ref
  42. Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 5732--5741. Google ScholarGoogle ScholarCross RefCross Ref
  43. Jason Y. Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. 2021c. NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild. CoRR abs/2110.07604 (2021). arXiv:2110.07604 https://arxiv.org/abs/2110.07604Google ScholarGoogle Scholar
  44. Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021a. PhySG: Inverse Rendering With Spherical Gaussians for Physics-Based Material Editing and Relighting. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 5453--5462. https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_PhySG_Inverse_Rendering_With_Spherical_Gaussians_for_Physics-Based_Material_Editing_CVPR_2021_paper.htmlGoogle ScholarGoogle Scholar
  45. Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E. Debevec, William T. Freeman, and Jonathan T. Barron. 2021b. NeRFactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. 40, 6 (2021), 237:1--237:18. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. NeROIC: neural rendering of objects from online image collections

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader