skip to main content
research-article

High dynamic range and super-resolution from raw image bursts

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Photographs captured by smartphones and mid-range cameras have limited spatial resolution and dynamic range, with noisy response in underexposed regions and color artefacts in saturated areas. This paper introduces the first approach (to the best of our knowledge) to the reconstruction of highresolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing. This method uses a physically-accurate model of image formation to combine an iterative optimization algorithm for solving the corresponding inverse problem with a learned image representation for robust alignment and a learned natural image prior. The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration, and features that are learned end to end from synthetic yet realistic data. Extensive experiments demonstrate its excellent performance with super-resolution factors of up to ×4 on real photographs taken in the wild with hand-held cameras, and high robustness to low-light conditions, noise, camera shake, and moderate object motion.

Skip Supplemental Material Section

Supplemental Material

3528223.3530180.mp4

presentation

References

  1. Cecilia Aguerrebere, Julie Delon, Yann Gousseau, and Pablo Musé. 2014. Best Algorithms for HDR Image Generation. A Study of Performance Bounds. SIAM Journal on Imaging Science 7, 1 (2014), 1--34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Paul E. Anuta. 1970. Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform Techniques. IEEE Transactions on Geoscience eletronics 8, 4 (1970), 353--368.Google ScholarGoogle ScholarCross RefCross Ref
  3. Tunç Ozan Aydin, Rafal Mantiuk, and Hans-Peter Seidel. 2008. Extending quality metrics to full luminance range images. In Proceedings of Human Vision and Electronic Imaging (SPIE Proceedings), Bernice E. Rogowitz and Thrasyvoulos N. Pappas (Eds.), Vol. 6806. SPIE, 68060B.Google ScholarGoogle Scholar
  4. Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2018. Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research (JMLR) 18 (2018), 1--43.Google ScholarGoogle Scholar
  5. Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. 2021a. Deep Burst Super-Resolution. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 9209--9218.Google ScholarGoogle ScholarCross RefCross Ref
  6. Goutam Bhat, Martin Danelljan, Fisher Yu, Luc Van Gool, and Radu Timofte. 2021b. Deep Reparametrization of Multi-Frame Super-Resolution and Denoising. (2021), 2460--2470.Google ScholarGoogle Scholar
  7. Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and Jonathan T. Barron. 2019. Unprocessing Images for Learned Raw Denoising. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 11036--11045.Google ScholarGoogle Scholar
  8. Che-Han Chang, Chun-Nan Chou, and Edward Y Chang. 2017. CLKN: Cascaded lucaskanade networks for image alignment. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 2213--2221.Google ScholarGoogle Scholar
  9. Jongseong Choi, Min Kyu Park, and Moon Gi Kang. 2009. High Dynamic Range Image Reconstruction with Spatial Resolution Enhancement. Computer Journal 52, 1 (2009), 114--125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Roger N. Clark. 2006. Digital Camera Reviews and Sensor Performance Summary. "https://clarkvision.com/articles/digital.sensor.performance.summary/".Google ScholarGoogle Scholar
  11. Ryan Dahl, Mohammad Norouzi, and Jonathon Shlens. 2017. Pixel Recursive Super Resolution. In Proceedings of the International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  12. Paul E. Debevec and Jitendra Malik. 1997. Recovering high dynamic range radiance maps from photographs. In SIGGRAPH. ACM, 369--378.Google ScholarGoogle Scholar
  13. Xin Deng, Yutong Zhang, Mai Xu, Shuhang Gu, and Yiping Duan. 2021. Deep Coupled Feedback Network for Joint Exposure Fusion and Image Super-Resolution. IEEE Transactions on Image Processing (TIP) 30 (2021), 3098--3112.Google ScholarGoogle ScholarCross RefCross Ref
  14. Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Khan, and Ming-Hsuan Yang. 2021. Burst Image Restoration and Enhancement. arXiv preprint arXiv:2110.03680 (2021).Google ScholarGoogle Scholar
  15. Gabriel Eilertsen, Saghi Hajisharif, Param Hanji, Apostolia Tsirikoglou, Rafal K. Mantiuk, and Jonas Unger. 2021. How to cheat with metrics in single-image HDR reconstruction. In Proceedings of the workshops of the International Conference on Computer Vision (ICCVW). 3981--3990.Google ScholarGoogle ScholarCross RefCross Ref
  16. Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafal K. Mantiuk, and Jonas Unger. 2017. HDR image reconstruction from a single exposure using deep CNNs. ACM Transactions on Graphics 36, 6 (2017), 178:1--178:15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Yuki Endo, Yoshihiro Kanamori, and Jun Mitani. 2017. Deep reverse tone mapping. ACM Transactions on Graphics (ToG) 36, 6 (2017), 177:1--177:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Manfred Ernst and Bartlomiej Wronski. 2021. HDR+ with Bracketing on Pixel Phones. "https://ai.googleblog.com/2021/04/hdr-with-bracketing-on-pixel-phones.html".Google ScholarGoogle Scholar
  19. Sina Farsiu, Michael Elad, and Peyman Milanfar. 2006. Multiframe demosaicing and super-resolution of color images. IEEE Transactions on Image Processing (TIP) 15, 1 (2006), 141--159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen O. Egiazarian. 2008. Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data. IEEE Transactions on Image Processing (TIP) 17, 10 (2008), 1737--1754.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Orazio Gallo, Marius Tico, Roberto Manduchi, Natasha Gelfand, and Kari Pulli. 2012. Metering for Exposure Stacks. Computer Graphics Forum 31, 2 (2012), 479--488.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Orazio Gallo, Alejandro J. Troccoli, Jun Hu, Kari Pulli, and Jan Kautz. 2015. Locally non-rigid registration for mobile HDR photography. In (CVPRW). IEEE Computer Society, 48--55.Google ScholarGoogle Scholar
  23. Donald Geman and Chengda Yang. 1995. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing (TIP) 5, 7 (1995), 932--946.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Miguel Granados, Boris Ajdin, Michael Wand, Christian Theobalt, Hans-Peter Seidel, and Hendrik P. A. Lensch. 2010. Optimal HDR reconstruction with linear digital cameras. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 215--222.Google ScholarGoogle Scholar
  25. Bahadir K. Gunturk and Murat Gevrekci. 2006. High-resolution image reconstruction from multiple differently exposed images. IEEE Signal Processing Letters 13, 4 (2006), 197--200.Google ScholarGoogle ScholarCross RefCross Ref
  26. Param Hanji, Fangcheng Zhong, and Rafal K. Mantiuk. 2020. Noise-Aware Merging of High Dynamic Range Image Stacks Without Camera Calibration. In Proceedings of the workshops of the European Conference on Computer Vision (ECCVW). 376--391.Google ScholarGoogle Scholar
  27. Samuel W. Hasinoff, Frédo Durand, and William T. Freeman. 2010. Noise-optimal capture for high dynamic range photography. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 553--560.Google ScholarGoogle Scholar
  28. Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Transactions on Graphics (ToG) 35, 6 (2016), 192:1--192:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pajak, Dikpal Reddy, Orazio Gallo, Jing Liu abd Wolfgang Heidrich, Karen Egiazarian, Jan Kautz, and Kari Pulli. 2014. FlexISP: A flexible camera image processing framework. ACM Transactions on Graphics (ToG) 33, 6 (2014), 231:1--231:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Andrey Ignatov, Luc Van Gool, and Radu Timofte. 2020. Replacing mobile camera isp with a single deep learning model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 536--537.Google ScholarGoogle ScholarCross RefCross Ref
  31. Nima Khademi Kalantari and Ravi Ramamoorthi. 2017. Deep high dynamic range imaging of dynamic scenes. ACM Transactions on Graphics (ToG) 36, 4 (2017), 144:1--144:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Soo Ye Kim, Jihyong Oh, and Munchurl Kim. 2019. Deep SR-ITM: Joint Learning of Super-Resolution and Inverse Tone-Mapping for 4K UHD HDR Applications. In Proceedings of the International Conference on Computer Vision (ICCV). 3116--3125.Google ScholarGoogle ScholarCross RefCross Ref
  33. Bruno Lecouat, Jean Ponce, and Julien Mairal. 2021. Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts. In Proceedings of the International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  34. Anat Levin, Robert Fergus, Frédo Durand, and William T. Freeman. 2007. Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics (ToG) 26, 3 (2007), 70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Orly Liba, Kiran Murthy, Yun-Ta Tsai, Tim Brooks, Tianfan Xue, Nikhil Karnad, Qiurui He, Jonathan T. Barron, Dillon Sharlet, Ryan Geiss, Samuel W. Hasinoff, Yael Pritch, and Marc Levoy. 2019. Handheld mobile photography in very low light. ACM Transactions on Graphics (ToG) 38, 6 (2019), 164:1--164:16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao, Ming-Hsuan Yang, Yung-Yu Chuang, and Jia-Bin Huang. 2020. Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 1648--1657.Google ScholarGoogle ScholarCross RefCross Ref
  37. Bruce D. Lucas and Takeo Kanade. 1981. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 674--679.Google ScholarGoogle Scholar
  38. Guillermo Luijk. 2007. Dcraw tutorial. "http://guillermoluijk.com/tutorial/dcraw/index_en.htm".Google ScholarGoogle Scholar
  39. Ziwei Luo, Lei Yu, Xuan Mo, Youwei Li, Lanpeng Jia, Haoqiang Fan, Jian Sun, and Shuaicheng Liu. 2021. EBSR: Feature enhanced burst super-resolution with deformable alignment. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops. 471--478.Google ScholarGoogle ScholarCross RefCross Ref
  40. Kede Ma, Hui Li, Hongwei Yong, Zhou Wang, Deyu Meng, and Lei Zhang. 2017. Robust Multi-Exposure Image Fusion: A Structural Patch Decomposition Approach. IEEE Transactions on Image Processing (TIP) 26, 5 (2017), 2519--2532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Henrique S. Malvar, Li-wei He, and Ross Cutler. 2004. High-quality linear interpolation for demosaicing of Bayer-patterned color images. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP). 485--488.Google ScholarGoogle ScholarCross RefCross Ref
  42. Steve Mann and Rosalind W. Picard. 1995. On being 'undigital' with digital cameras: Extending dynamic range by combining differently exposed pictures. In Proceedings of Is&T. 442--448.Google ScholarGoogle Scholar
  43. Julien NP Martel, Lorenz K Mueller, Stephen J Carey, Piotr Dudek, and Gordon Wetzstein. 2020. Neural sensors: Learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 7 (2020), 1642--1653.Google ScholarGoogle ScholarCross RefCross Ref
  44. Emil Martinec. 2008. Noise, Dynamic Range and Bit Depth in Digital SLRs. "https://photonstophotos.net/EmilMartinec/noise.html".Google ScholarGoogle Scholar
  45. Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. 2020. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  46. Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul Srinivasan, and Jonathan T Barron. 2021. NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images. arXiv preprint arXiv:2111.13679 (2021).Google ScholarGoogle Scholar
  47. Antoine Monod, Julie Delon, and Thomas Veit. 2021. An Analysis and Implementation of the HDR+ Burst Denoising Method. Image Processing On Line 11 (2021), 142--169.Google ScholarGoogle ScholarCross RefCross Ref
  48. Manish Narwaria, Rafal K. Mantiuk, Matthieu Perreira Da Silva, and Patrick Le Callet. 2015. HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images. Journal on Electronic Imaging 24, 1 (2015), 010501.Google ScholarGoogle ScholarCross RefCross Ref
  49. Shree K Nayar and Tomoo Mitsunaga. 2000. High dynamic range imaging: Spatially varying pixel exposures. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 1. IEEE, 472--479.Google ScholarGoogle ScholarCross RefCross Ref
  50. Yuzhen Niu, Jianbin Wu, Wenxi Liu, Wenzhong Guo, and Rynson W. H. Lau. 2021. HDR-GAN: HDR Image Reconstruction From Multi-Exposed LDR Images With Large Motions. IEEE Transactions on Image Processing (TIP) 30 (2021), 3885--3896.Google ScholarGoogle ScholarCross RefCross Ref
  51. Neal Parikh and Stephen P. Boyd. 2014. Proximal Algorithms. Foundations and Trends in Optimization 1, 3 (2014), 127--239.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Ales Leonardis, and Radu Timofte. 2021. NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and Results. In CVPR Workshops. 691--700.Google ScholarGoogle Scholar
  53. Tobias Plötz and Stefan Roth. 2017. Benchmarking Denoising Algorithms with Real Photographs. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 2750--2759.Google ScholarGoogle ScholarCross RefCross Ref
  54. Ali Ajdari Rad, Laurence Meylan, Patrick Vandewalle, and Sabine Süsstrunk. 2007. Multidimensional image enhancement from a set of unregistered and differently exposed images. In Computational Imaging (SPIE Proceedings), Vol. 6498. SPIE, 649808.Google ScholarGoogle Scholar
  55. Erik Reinhard, Michael M. Stark, Peter Shirley, and James A. Ferwerda. 2002. Photographic tone reproduction for digital images. ACM Transactions on Graphics (ToG) 21, 3 (2002), 267--276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Javier Sanchez. 2016. The inverse compositional algorithm for parametric registration. Image Processing On Line (2016).Google ScholarGoogle Scholar
  57. Marcel Santana Santos, Tsang Ing Ren, and Nima Khademi Kalantari. 2020. Single image HDR reconstruction using a CNN with masked features and perceptual loss. ACM Transactions on Graphics (ToG) 39, 4 (2020), 80.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Pradeep Sen, Nima Khademi Kalantari, Maziar Yaesoubi, Soheil Darabi, Dan B. Goldman, and Eli Shechtman. 2012. Robust patch-based HDR reconstruction of dynamic scenes. ACM Transactions on Graphics (ToG) 31, 6 (2012), 203:1--203:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Ana Serrano, Felix Heide, Diego Gutierrez, Gordon Wetzstein, and Belen Masia. 2016. Convolutional sparse coding for high dynamic range imaging. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 153--163.Google ScholarGoogle Scholar
  60. Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. 2007. Kernel Regression for Image Processing and Reconstruction. IEEE Transactions on Image Processing (TIP) 16, 2 (2007), 349--366.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Yann Traonmilin and Cecilia Aguerrebere. 2014. Simultaneous High Dynamic Range and Superresolution Imaging without Regularization. SIAM Journal on Imaging Science 7, 3 (2014), 1624--1644.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Okan Tarhan Tursun, Ahmet Oguz Akyüz, Aykut Erdem, and Erkut Erdem. 2016. An Objective Deghosting Quality Metric for HDR Images. Computer Graphics Forum 35, 2 (2016), 139--152.Google ScholarGoogle ScholarCross RefCross Ref
  63. Patrick Vandewalle, Sabine Süsstrunk, and Martin Vetterli. 2006. A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution. EURASIP Journal on Advances in Signal Processing 2006 (2006).Google ScholarGoogle Scholar
  64. Subeesh Vasu, Abhijeet Shenoi, and A. N. Rajagopalan. 2018. Joint HDR and SuperResolution Imaging in Motion Blur. In Proceedings of the International Conference on Image Processing (ICIP). 2885--2889.Google ScholarGoogle Scholar
  65. Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. 2013. Plug-and-play priors for model based reconstruction. In Proceedings of the Global Conference on Signal and Information Processing. 945--948.Google ScholarGoogle ScholarCross RefCross Ref
  66. Greg Ward. 2003. Fast, Robust Image Registration for Compositing High Dynamic Range Photographs from Hand-Held Exposures. Journal on Graphics, GPU, & Game Tools 8, 2 (2003), 17--30.Google ScholarGoogle ScholarCross RefCross Ref
  67. Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly, Michael Krainin, Chia-Kai Liang, Marc Levoy, and Peyman Milanfar. 2019. Handheld multiframe super-resolution. ACM Transactions on Graphics (ToG) 38, 4 (2019), 28:1--28:18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Shangzhe Wu, Jiarui Xu, Yu-Wing Tai, and Chi-Keung Tang. 2018. Deep High Dynamic Range Imaging with Large Foreground Motions. In Proceedings of the European Conference on Computer Vision (ECCV). 120--135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Qingsen Yan, Dong Gong, Javen Qinfeng Shi, Anton van den Hengel, Chunhua Shen, Ian Reid, and Yanning Zhang. 2021. Dual-attention-guided network for ghost-free high dynamic range imaging. International Journal of Computer Vision (IJCV) (2021), 1--19.Google ScholarGoogle Scholar
  70. Qingsen Yan, Lei Zhang, Yu Liu, Yu Zhu, Jinqiu Sun, Qinfeng Shi, and Yanning Zhang. 2020. Deep HDR Imaging via A Non-Local Network. IEEE Transactions on Image Processing (TIP) 29 (2020), 4308--4322.Google ScholarGoogle ScholarCross RefCross Ref
  71. Kai Zhang, Luc Van Gool, and Radu Timofte. 2020. Deep unfolding network for image super-resolution. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 3217--3226.Google ScholarGoogle ScholarCross RefCross Ref
  72. Henning Zimmer, Andrés Bruhn, and Joachim Weickert. 2011. Freehand HDR Imaging of Moving Scenes with Simultaneous Resolution Enhancement. Computer Graphics Forum 30, 2 (2011), 405--414.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. High dynamic range and super-resolution from raw image bursts

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader