skip to main content
research-article

EMBER: exact mesh booleans via efficient & robust local arrangements

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Boolean operators are an essential tool in a wide range of geometry processing and CAD/CAM tasks. We present a novel method, EMBER, to compute Boolean operations on polygon meshes which is exact, reliable, and highly performant at the same time. Exactness is guaranteed by using a plane-based representation for the input meshes along with recently introduced homogeneous integer coordinates. Reliability and robustness emerge from a formulation of the algorithm via generalized winding numbers and mesh arrangements. High performance is achieved by avoiding the (pre-)construction of a global acceleration structure. Instead, our algorithm performs an adaptive recursive subdivision of the scene's bounding box while generating and tracking all required data on the fly. By leveraging a number of early-out termination criteria, we can avoid the generation and inspection of regions that do not contribute to the output. With a careful implementation and a work-stealing multi-threading architecture, we are able to compute Boolean operations between meshes with millions of triangles at interactive rates. We run an extensive evaluation on the Thingi10K dataset to demonstrate that our method outperforms state-of-the-art algorithms, even inexact ones like QuickCSG, by orders of magnitude.

Skip Supplemental Material Section

Supplemental Material

3528223.3530181.mp4

presentation

References

  1. Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Computer-Aided Design 126 (Sep 2020), 102856. Google ScholarGoogle ScholarCross RefCross Ref
  2. Hichem Barki, Gael Guennebaud, and Sebti Foufou. 2015. Exact, robust, and efficient regularized Booleans on general 3D meshes. Computers & Mathematics with Applications 70, 6 (2015), 1235--1254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gilbert Bernstein. 2013. Cork Boolean Library. https://github.com/gilbo/cork Accessed January 19, 2022.Google ScholarGoogle Scholar
  4. Gilbert Bernstein and Don Fussell. 2009. Fast, Exact, Linear Booleans. In Proceedings of the Symposium on Geometry Processing (Berlin, Germany) (SGP '09). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1269--1278.Google ScholarGoogle Scholar
  5. Marcel Campen and Leif Kobbelt. 2010. Exact and robust (self-) intersections for polygonal meshes. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 397--406.Google ScholarGoogle Scholar
  6. Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and Robust Mesh Arrangements Using Floating-Point Arithmetic. ACM Trans. Graph. 39, 6, Article 250 (Nov. 2020), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Salles Viana Gomes de Magalhães, W Randolph Franklin, and Marcus Vinícius Alvim Andrade. 2020. An Efficient and Exact Parallel Algorithm for Intersecting Large 3-D Triangular Meshes Using Arithmetic Filters. Computer-Aided Design 120 (2020), 102801.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Matthijs Douze, Jean-Sébastien Franco, and Bruno Raffin. 2017. QuickCSG: Fast Arbitrary Boolean Combinations of N Solids. arXiv preprint arXiv:1706.01558 (2017).Google ScholarGoogle Scholar
  9. Torbjörn Granlund and the GMP development team. 2020. GNU MP: The GNU Multiple Precision Arithmetic Library. https://gmplib.org/.Google ScholarGoogle Scholar
  10. Peter Hachenberger, Lutz Kettner, and Kurt Mehlhorn. 2007. Boolean operations on 3D selective Nef complexes: Data structure, algorithms, optimized implementation and experiments. Computational Geometry 38, 1--2 (2007), 64--99.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Alec Jacobson, Ladislav Kavan, and Olga Sorkine. 2013. Robust Inside-Outside Segmentation using Generalized Winding Numbers. ACM Trans. Graph. 32, 4 (2013).Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bruce Naylor, John Amanatides, and William Thibault. 1990. Merging BSP trees yields polyhedral set operations. ACM Siggraph Computer Graphics 24, 4 (1990), 115--124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Walter Nef. 1978. Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik. (1978).Google ScholarGoogle Scholar
  14. Julius Nehring-Wirxel, Philip Trettner, and Leif Kobbelt. 2021. Fast Exact Booleans for Iterated CSG using Octree-Embedded BSPs. Computer-Aided Design 135 (2021), 103015.Google ScholarGoogle ScholarCross RefCross Ref
  15. Dairon Sanchez. 2021. Bar Chair Round 01. https://polyhaven.com/a/bar_chair_round_01 Accessed January 19, 2022.Google ScholarGoogle Scholar
  16. Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997), 305--363.Google ScholarGoogle ScholarCross RefCross Ref
  17. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrangements for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July 2016), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint arXiv:1605.04797 (2016).Google ScholarGoogle Scholar

Index Terms

  1. EMBER: exact mesh booleans via efficient & robust local arrangements

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader