skip to main content
research-article

SPCBPT: subspace-based probabilistic connections for bidirectional path tracing

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Bidirectional path tracing (BDPT) can be accelerated by selecting appropriate light sub-paths for connection. However, existing algorithms need to perform frequent distribution reconstruction and have expensive overhead. We present a novel approach, SPCBPT, for probabilistic connections that constructs the light selection distribution in sub-path space. Our approach bins the sub-paths into multiple subspaces and keeps the sub-paths in the same subspace of low discrepancy, wherein the light sub-paths can be selected by a subspace-based two-stage sampling method, i.e., first sampling the light subspace and then resampling the light sub-paths within this subspace. The subspace-based distribution is free of reconstruction and provides efficient light selection at a very low cost. We also propose a method that considers the Multiple Importance Sampling (MIS) term in the light selection and thus obtain an MIS-aware distribution that can minimize the upper bound of variance of the combined estimator. Prior methods typically omit this MIS weights term. We evaluate our algorithm using various benchmarks, and the results show that our approach has superior performance and can significantly reduce the noise compared with the state-of-the-art method.

Skip Supplemental Material Section

Supplemental Material

077-783-supp-video.mp4

supplemental material

3528223.3530183.mp4

presentation

References

  1. B. Bitterli, C. Wyman, M. Pharr, P. Shirley, A. Lefohn, and W. Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph. (TOG) 39, 4 (07 2020), 148:1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. R. A. Chaitanya, L. Belcour, T. Hachisuka, S. Premoze, J. Pantaleoni, and D. Nowrouzezahrai. 2018. Matrix Bidirectional Path Tracing. In Eurographics Symposium on Rendering - Experimental Ideas & Implementations. The Eurographics Association, 23--32.Google ScholarGoogle Scholar
  3. T. Davidovič, J. Krivanek, M. Hašan, and P. Slusallek. 2014. Progressive Light Transport Simulation on the GPU. ACM Trans. Graph. (TOG) 33, 3 (05 2014), 29:1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. X. Deng, S. Jiao, B. Bitterli, and W. Jarosz. 2019. Photon surfaces for robust, unbiased volumetric density estimation. ACM Trans. Graph. (TOG) 38, 4 (07 2019), 46:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Diolatzis, A. Gruson, W. Jakob, D. Nowrouzezahrai, and G. Drettakis. 2020. Practical Product Path Guiding Using Linearly Transformed Cosines. Computer Graphics Forum 39, 4 (07 2020), 23--33.Google ScholarGoogle Scholar
  6. R. Douc, A. Guillin, J. M. Marin, and C. P. Robert. 2007. Minimum variance importance sampling via Population Monte Carlo. ESAIM: Probability and Statistics 11 (2007), 427--447. Google ScholarGoogle ScholarCross RefCross Ref
  7. I. Georgiev, J. Krivanek, T. Davidovivc, and P. Slusallek. 2012a. Light Transport Simulation with Vertex Connection and Merging. ACM Trans. Graph. (TOG) 31, 6 (11 2012), 192:1--192:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Georgiev, J. Krivanek, S. Popov, and P. Slusallek. 2012b. Importance Caching for Complex Illumination. Computer Graphics Forum 31, 2 (05 2012), 701--710.Google ScholarGoogle Scholar
  9. P. Grittmann, I. Georgiev, and P. Slusallek. 2021. Correlation-Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms. Computer Graphics Forum 40, 2 (05 2021), 231--238.Google ScholarGoogle Scholar
  10. J. Guo, P. Bauszat, J. Bikker, and E. Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering, Vol. 2018. The Eurographics Association, 73--82.Google ScholarGoogle Scholar
  11. T. Hachisuka and H. W. Jensen. 2009. Stochastic Progressive Photon Mapping. ACM Trans. Graph. (TOG) 28, 5 (12 2009), 141:1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Hachisuka, J. Pantaleoni, and H. W. Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. Graph. (TOG) 31, 6 (11 2012), 191:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Hašan and F. Pellacini. 2007. Matrix Row-Column Sampling for the Many-Light Problem. ACM Trans. Graph. (TOG) 26, 3 (08 2007), 26:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Herholz, O. Elek, J. Vorba, H. Lensch, and J. Krivanek. 2016. Product Importance Sampling for Light Transport Path Guiding. Computer Graphics Forum 35, 4 (06 2016), 67--77.Google ScholarGoogle Scholar
  15. W. Jakob and S. Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. Graph. (TOG) 31, 4 (07 2012), 58:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. w. Jensen. 1996. Importance Driven Path Tracing Using the Photon Map. Eurographics Rendering Workshop (09 1996), 326--335.Google ScholarGoogle Scholar
  17. A. Keller. 1997. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 49--56.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (12 2014).Google ScholarGoogle Scholar
  19. J. Krivanek, M. Hasan, A. Arbree, C. Dachsbacher, A. Keller, and B. Walter. 2014. Scalable Realistic Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (02 2014), 88--104.Google ScholarGoogle Scholar
  20. E. P. Lafortune and Y. D. Willems. 1993. Bi-Directional Path Tracing. In Proceedings of Compugraphics. 145--153.Google ScholarGoogle Scholar
  21. E. P. Lafortune and Y. D. Willems. 1999. A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing. In Rendering Techniques.Google ScholarGoogle Scholar
  22. Z. Lin, S. Li, X. Zeng, C. Zhang, J. Jia, G. Wang, and D. Manocha. 2020. CPPM: chi-squared progressive photon mapping. ACM Trans. Graph. (TOG) 39, 6 (11 2020), 240:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Müller, B. Mcwilliams, F. Rousselle, M. Gross, and J. Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. (TOG) 38, 5 (10 2019), 145:1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Müller, F. Rousselle, A. Keller, and J. Novák. 2020. Neural Control Variates. ACM Trans. Graph. (TOG) 39, 6 (11 2020), 243:1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Müller, M. Gross, and J. Novák. 2017. Practical Path Guiding for Efficient LightTransport Simulation. Computer Graphics Forum 36, 4 (07 2017), 91--100.Google ScholarGoogle Scholar
  26. K. Nabata, K. Iwasaki, and Y. Dobashi. 2020a. Resampling-aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths. ACM Trans. Graph. (TOG) 39, 2 (03 2020), 15:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. Nabata, K. Iwasaki, and Y. Dobashi. 2020b. Two-stage Resampling for Bidirectional Path Tracing with Multiple Light Sub-paths. Computer Graphics Forum 39, 7 (10 2020), 219--230.Google ScholarGoogle Scholar
  28. J. Ou and F. Pellacini. 2011. LightSlice: matrix slice sampling for the many-lights problem. ACM Trans. Graph. (TOG) 30, 6 (12 2011), 179:1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Pajot, L. Barthe, M. Paulin, and P. Poulin. 2011. Combinatorial bidirectional path-tracing for efficient hybrid CPU/GPU rendering. Computer Graphics Forum 30, 2 (2011), 315--324.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, et al. 2010. Optix: a general purpose ray tracing engine. ACM Trans. Graph. (TOG) 29, 4 (07 2010), 66:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Computer Graphics Forum 34, 4 (07 2015), 75--86.Google ScholarGoogle Scholar
  32. A. Rath, P. Grittmann, Sebastian H., P. Vévoda, P. Slusallek, and J. Křivánek. 2020. Variance-Aware Path Guiding. ACM Trans. Graph. (TOG) 39, 4 (07 2020), 151:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Sbert, V. Havran, and L. Szirmay-Kalos. 2016. Variance Analysis of Multi-sample and One-sample Multiple Importance Sampling. Computer Graphics Forum 35, 7 (10 2016), 451--460.Google ScholarGoogle Scholar
  34. J. Talbot, D. Cline, and P. Egbert. 2005. Importance Resampling for Global Illumination. Eurographics Symposium on Rendering, 139--146.Google ScholarGoogle Scholar
  35. Y. Tokuyoshi and T. Harada. 2019. Hierarchical russian roulette for vertex connections. ACM Trans. Graph. (TOG) 38, 4 (07 2019), 36:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. V. Antwerpen. 2011. Recursive MIS Computation for Streaming BDPT on the GPU. Technical Report.Google ScholarGoogle Scholar
  37. E. Veach and L. Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. 145--167.Google ScholarGoogle Scholar
  38. E. Veach and L. Guibas. 1995b. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. 419--428.Google ScholarGoogle Scholar
  39. E. Veach and L. J. Guibas. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 65--76.Google ScholarGoogle Scholar
  40. P. Vévoda, I. Kondapaneni, and J. Křivánek. 2018. Bayesian Online Regression for Adaptive Direct Illumination Sampling. ACM Trans. Graph. (TOG) 37, 4 (07 2018), 125:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Vorba, J. Hanika, S. Herholz, T. Müller, J. Křivánek, and A. Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019 Courses. 18:41--45.Google ScholarGoogle Scholar
  42. J. Vorba, O. Karlík, M. Šik, T. Ritschel, and J. Krivanek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. (TOG) 33, 4 (07 2014), 101:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. B. Walter, A. Arbree, K. Bala, and D. Greenberg. 2006. Multidimensional Lightcuts. ACM Trans. Graph. (TOG) 25 (07 2006), 1081--1088.Google ScholarGoogle Scholar
  44. B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. Greenberg. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. Graph. (TOG) 24, 3 (07 2005), 1098--1107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. B. Walter, P. Khungurn, and K. Bala. 2012. Bidirectional lightcuts. ACM Trans. Graph. (TOG) 31, 4 (07 2012), 59:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Wang, Y. Wu, T. Li, and Y. Chuang. 2021. Learning to Cluster for Rendering with Many Lights. ACM Trans. Graph. (TOG) 40, 6 (12 2021), 277:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Y. Wu and Y. Chuang. 2013. VisibilityCluster: Average Directional Visibility for Many-Light Rendering. IEEE transactions on visualization and computer graphics 19 (09 2013), 1566--1578.Google ScholarGoogle Scholar

Index Terms

  1. SPCBPT: subspace-based probabilistic connections for bidirectional path tracing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader