skip to main content
10.1145/3532719.3543202acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
poster

Artist Controlled Fracture Design Using Impurity Maps

Authors Info & Claims
Published:25 July 2022Publication History

ABSTRACT

When an object breaks, simulating evolution of fracture as per artist control while maintaining physical realism and plausibility is a challenging problem due to different complex material properties of real world objects. In this work, we present impurity maps as a way to guide fracture paths for both brittle and ductile fracture. We develop a novel probabilistic damage mechanics to model fracture in materials with impurities, using a random graph-based formulation in conjunction with graph-based FEM. An artist created map allows us to selectively distribute the impurities in the material, to weaken the object in those specific regions where the imperfections are added. During simulation, the presence of impurities guide the cracks that develop such that the fracture pattern closely follows the impurity map. We simulate artist-controlled fractures on different materials to demonstrate the potency of our method.

Skip Supplemental Material Section

Supplemental Material

References

  1. P. Khodabakhshi, J. N. Reddy, and A. Srinivasa. 2016. GraFEA: a graph-based finite element approach for the study of damage and fracture in brittle materials. Meccanica 51(2016), 3129 – 3147.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Mandal, P. Chaudhuri, and S. Chaudhuri. 2021. Remeshing-Free Graph-Based Finite Element Method for Ductile and Brittle Fracture. arxiv:cs.GR/2103.14870Google ScholarGoogle Scholar
  3. J. F. O’Brien and J. K. Hodgins. 1999. Graphical Modeling and Animation of Brittle Fracture. In Proc. of SIGGRAPH ’99. 137–146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boris Pittel. 2010. On a random graph evolving by degrees. Advances in Mathematics 223, 2 (2010), 619–671.Google ScholarGoogle ScholarCross RefCross Ref
  5. Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang, Ziyin Qu, Jiecong Lu, Meggie Cheng, and Chenfanfu Jiang. 2020. AnisoMPM: Animating Anisotropic Damage Mechanics. ACM Trans. Graph. 39, 4 (2020), 16.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Posters
    July 2022
    132 pages
    ISBN:9781450393614
    DOI:10.1145/3532719

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 July 2022

    Check for updates

    Qualifiers

    • poster
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%
  • Article Metrics

    • Downloads (Last 12 months)48
    • Downloads (Last 6 weeks)4

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format