skip to main content
10.1145/3532719.3543224acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
poster

Physics-based Character Control Using conditional GAIL

Authors Info & Claims
Published:25 July 2022Publication History

ABSTRACT

The goal of our research is to control a physics-based character that learns several dynamic motor skills using conditional Generative adversarial imitation learning(GAIL). We present a network-based learning algorithm that learns various motor skills and changing motions between the motor skills from disparate motion clips. The overall framework for our controller is composed of a control policy which generates a character’s behavior, and a discriminator which induces the policy to produce proper motions from a user’s commands. The discriminator and the policy take outputs from each other as input and improve each performance through an adversarial training process. Using this system, when a user commands a specific motion to the character, the character can design a motion plan to perform the motion from the current pose. We demonstrated the effectiveness of our approach through examples with an interactive character that learns various dynamics motor skills and follows a user command in the physics simulation.

Skip Supplemental Material Section

Supplemental Material

[v3]supplementary_video.mp4

Poster and Supplementary video

References

  1. Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning. Advances in neural information processing systems 29 (2016).Google ScholarGoogle Scholar
  2. Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional image synthesis with auxiliary classifier gans. In International conference on machine learning. PMLR, 2642–2651.Google ScholarGoogle Scholar
  3. Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. Amp: Adversarial motion priors for stylized physics-based character control. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–20.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Posters
    July 2022
    132 pages
    ISBN:9781450393614
    DOI:10.1145/3532719

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 July 2022

    Check for updates

    Qualifiers

    • poster
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%
  • Article Metrics

    • Downloads (Last 12 months)78
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format