skip to main content
10.1145/3532719.3543246acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
poster

Local Scale Adaptation for Augmenting Hand Shape Models

Published:25 July 2022Publication History

ABSTRACT

The accuracy of hand pose and shape recovery algorithms depends on how closely the geometric hand model resembles the user’s hand. Most existing methods rely on learned shape space, e.g. MANO; but this shape model fails to generalize to unseen hand shapes with large deviations from the training set. We introduce a new hand shape model, aMANO, that augments MANO by introducing local scale adaptation that enables modeling substantially different hand sizes. We use both MANO and aMANO for calibrating the shape to new users from a stream of depth images and observe the improvement of aMANO over MANO. We believe that our new hand shape model is a significant step in improving the robustness and accuracy of existing hand tracking solutions.

Skip Supplemental Material Section

Supplemental Material

supplementary_video.mp4

Supplementary video

References

  1. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. ACM TOG 30, 4 (2011), 78:1–78:8.Google ScholarGoogle Scholar
  2. Alec Jacobson and Olga Sorkine. 2011. Stretchable and Twistable Bones for Skeletal Shape Deformation. ACM TOG 30, 6 (2011), 165:1–165:8.Google ScholarGoogle Scholar
  3. Javier Romero, Dimitrios Tzionas, and Michael J. Black. 2017. Embodied Hands: Modeling and Capturing Hands and Bodies Together. ACM TOG 36, 6 (2017), 245:1–245:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Joseph Tan, Tom Cashman, Jonathan Taylor, Andrew Fitzgibbon, Daniel Tarlow, Sameh Khamis, Shahram Izadi, and Jamie Shotton. 2016. Fits Like a Glove: Rapid and Reliable Hand Shape Personalization. In CVPR.Google ScholarGoogle Scholar
  5. Anastasia Tkach, Andrea Tagliasacchi, Edoardo Remelli, Mark Pauly, and Andrew Fitzgibbon. 2017. Online generative model personalization for hand tracking. ACM TOG 36, 6 (2017), 1–11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. 2014. Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks. ACM TOG 33(2014).Google ScholarGoogle Scholar
  7. S. Yuan, Q. Ye, B. Stenger, S. Jain, and T. Kim. 2017. BigHand2.2M Benchmark: Hand Pose Dataset and State of the Art Analysis. In CVPR. 2605–2613.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Posters
    July 2022
    132 pages
    ISBN:9781450393614
    DOI:10.1145/3532719

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 July 2022

    Check for updates

    Qualifiers

    • poster
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%
  • Article Metrics

    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format