skip to main content
10.1145/3532834.3536211acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
abstract

HyperJumping in Virtual Vancouver: Combating Motion Sickness by Merging Teleporting and Continuous VR Locomotion in an Embodied Hands-Free VR Flying Paradigm

Authors Info & Claims
Published:25 July 2022Publication History

ABSTRACT

Motion sickness, unintuitive navigation, and limited agency are critical issues in VR/XR impeding wide-spread adoption and enjoyable user experiences. To tackle these challenges, we present HyperJump, a novel VR interface merging advantages of continuous locomotion and teleportation/dashing into one seamless, hands-free, and easily learnable user interface supporting both flying and ground-based navigation across multiple scales.

Skip Supplemental Material Section

Supplemental Material

HyperJumpCalibrationInstructions1080p.mp4

Additional instructions on how to use the system

HyperJump_SiggraphImmersivePavillion2022_final.mp4

Main project video that explains the project and exhibit

References

  1. A. Adhikari, D. Zielasko, A. Bretin, M. von der Heyde, E. Kruijff, and B. E. Riecke. 2021. Integrating Continuous and Teleporting VR Locomotion into a Seamless “HyperJump” Paradigm. In IEEE VR. 370–372.Google ScholarGoogle Scholar
  2. D.A. Bowman, D. Koller, and L.F. Hodges. 1997. Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques. In IEEE VR. 45–52.Google ScholarGoogle Scholar
  3. E. Chang, H.T. Kim, and B. Yoo. 2020. Virtual Reality Sickness: A Review of Causes and Measurements. International Journal of HCI 36, 17 (2020), 1658–1682.Google ScholarGoogle Scholar
  4. J. Clifton and S. Palmisano. 2020. Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based VR. Virtual Reality 24, 3 (2020), 453–468.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Farmani and R.J. Teather. 2020. Evaluating Discrete Viewpoint Control to Reduce Cybersickness in Virtual Reality. Virtual Reality (2020), 1–20.Google ScholarGoogle Scholar
  6. A.S. Fernandes and S.K. Feiner. 2016. Combating VR Sickness Through Subtle Dynamic Field-Of-View Modification. Proc. of IEEE 3DUI (2016), 201–210.Google ScholarGoogle Scholar
  7. B. Lawson. 2014. Motion Sickness Symptomatology and Origins. In Handbook of Virtual Environments. Vol. 20143245. CRC Press, 531–600. ch 23.Google ScholarGoogle Scholar
  8. L. Rebenitsch and C. Owen. 2016. Review on cybersickness in applications and visual displays. Virtual Reality 20, 2 (2016), 101–125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B.E. Riecke and J. Schulte-Pelkum. 2015. An Integrative Approach to Presence and Self-Motion Perception Research. In Immersed in Media: Telepresence Theory, Measurement and Technology, Frank et al. Biocca (Ed.). Springer, 187–235.Google ScholarGoogle Scholar
  10. D. Saredakis, A. Szpak, B. Birckhead, H.A.D. Keage, A. Rizzo, and T. Loetscher. 2020. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Frontiers in Human Neuroscience 14 (2020).Google ScholarGoogle Scholar
  11. D. Zielasko, A. Meißner, S. Freitag, B. Weyers, and T.W. Kuhlen. 2018. Dynamic Field of View Reduction Related to Subjective Sickness Measures in an HMD-based Data Analysis Task. In Proc. of IEEE VR Workshop on Everday Virtual Reality. 1–6.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Immersive Pavilion
    July 2022
    33 pages
    ISBN:9781450393690
    DOI:10.1145/3532834

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 July 2022

    Check for updates

    Qualifiers

    • abstract
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format