skip to main content
10.1145/3532836.3536239acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
invited-talk

Advances in Spatial Hashing: A Pragmatic Approach towards Robust, Real-time Light Transport Simulation

Published:24 July 2022Publication History

ABSTRACT

Spatial hashing is a battle-tested technique for efficiently storing sparse spatial data. Originally designed to optimize secondary light bounces in path tracing, it has been extended for real-time ambient occlusion and diffuse environment lighting. We complement spatial hashing by introducing support for view-dependent effects using world-space temporal filtering. Optimizing the hash key generation, we improve performance using a much better cache coherence and aliasing reduction. Finally, we enhance the sampling quality using methods including visibility-aware environment sampling.

References

  1. Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2022. Massively Parallel Path Space Filtering. In Monte Carlo and Quasi-Monte Carlo Methods, MCQMC 2020, Oxford, United Kingdom, August 10–14, Alexander Keller (Ed.). Springer.Google ScholarGoogle Scholar
  2. Nikolaus Binder and Alexander Keller. 2019. Massively Parallel Construction of Radix Tree Forests for the Efficient Sampling of Discrete Probability Distributions. CoRR abs/1901.05423(2019). arXiv:1901.05423http://arxiv.org/abs/1901.05423Google ScholarGoogle Scholar
  3. George S. Fishman and Louis R. Moore. 1984. Sampling from a Discrete Distribution while Preserving Monotonicity. The American Statistician 38, 3 (1984), 219–223.Google ScholarGoogle Scholar
  4. Pascal Gautron. 2020. Real-Time Ray-Traced Ambient Occlusion of Complex Scenes Using Spatial Hashing. In ACM SIGGRAPH 2020 Talks. Article 5. https://doi.org/10.1145/3388767.3407375Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Pascal Gautron. 2021. Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX. Apress, Chapter Practical Spatial Hash Map Updates, 659–671. https://doi.org/10.1007/978-1-4842-7185-8_41Google ScholarGoogle Scholar
  6. Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global Illumination. In Proceedings of High Performance Graphics. Article 2. https://doi.org/10.1145/3105762.3105770Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Talks
    July 2022
    108 pages
    ISBN:9781450393713
    DOI:10.1145/3532836

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 July 2022

    Check for updates

    Qualifiers

    • invited-talk
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%
  • Article Metrics

    • Downloads (Last 12 months)79
    • Downloads (Last 6 weeks)5

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format