skip to main content
10.1145/3532836.3536255acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
invited-talk

Creating Life-like Autonomous Agents for Real-time Interactive Installations

Published:24 July 2022Publication History

ABSTRACT

This talk briefly describes the implementation of a complex virtual ecosystem of autonomous agents for the purpose of an art installation. The autonomous agents, called Aerobes, are inspired by the lifecycle of the Aurelia sp. jellyfish, and use artificial life techniques to simulate the behavior of two distinct types of organisms. We describe the process of using ethological research of organisms to design an artificial life system in a way that both creates a cohesive simulacrum of life-like behavior and allows for compelling interactions with audiences. We created complex behaviors for the Aerobes using low-level schemata that encapsulate individual goal-directed behaviors, and combined schemata to build behaviors that appear biomimetic. In order to give each agent the appearance of individuation, we mapped the underlying parameters of individual schemata and behaviors to personality traits to create a cohesive psychographic resource for autonomous agents that allowed for variance in decision-making and behaviors without additional computational complexity. The final artificial life system was then used to control the Aerobes in In Love With The World, a public art installation hosted at the Tate Modern’s Turbine Hall for four months.

References

  1. Robert Burke, Damian Isla, Marc Downie, Yuri Ivanov, and Bruce Blumberg. 2001. Creature Smarts: The Art and Architecture of a Virtual Brain. Proc. Comput. GAME Dev. Conf.(2001), 147—-166. https://doi.org/10.1.1.11.1968Google ScholarGoogle Scholar
  2. Janja Ceh, Jorge Gonzalez, Aldo S. Pacheco, and José M. Riascos. 2015. The elusive life cycle of scyphozoan jellyfish - Metagenesis revisited. Sci. Rep. 5, 1 (jul 2015), 1–13. https://doi.org/10.1038/srep12037Google ScholarGoogle Scholar
  3. Martin Gerlach, Beatrice Farb, William Revelle, and Luís A Nunes Amaral. 2018. A robust data-driven approach identifies four personality types across four large data sets. Nat. Hum. Behav. 2(2018), 735–742. https://doi.org/10.1038/s41562-018-0419-zGoogle ScholarGoogle ScholarCross RefCross Ref
  4. Nathan S Lachenmyer and Sadiya Akasha. 2022. An Aquarium of Machines : A Physically Realized Artificial Life Simulation. Proc. ACM Comput. Graph. Interact. Tech. 5, 4 (2022). https://doi.org/10.1145/3533388Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Craig W. Reynolds. 1987. Flocks, herds, and schools: A distributed behavioral model. In Proc. 14th Annu. Conf. Comput. Graph. Interact. Tech. SIGGRAPH 1987. Association for Computing Machinery, Inc, 25–34. https://doi.org/10.1145/37401.37406Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kingsley Stephens, Binh Pham, and Aster Wardhani. 2003. Modelling fish behaviour. In Proc. 1st Int. Conf. Comput. Graph. Interact. Tech. Australas. South East Asia, Graph. ’03. 71–78. https://doi.org/10.1145/604471.604488Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Xiaoyuan Tu and Demetri Terzopoulos. 1994. Artificial fishes: Physics, locomotion, perception, behavior. In Proc. 21st Annu. Conf. Comput. Graph. Interact. Tech. SIGGRAPH 1994. Association for Computing Machinery, Inc, New York, New York, USA, 43–50. https://doi.org/10.1145/192161.192170Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Thomas A. Widiger and Cristina Crego. 2019. The Five Factor Model of personality structure: an update. World Psychiatry 18, 3 (oct 2019), 271. https://doi.org/10.1002/WPS.20658Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Talks
    July 2022
    108 pages
    ISBN:9781450393713
    DOI:10.1145/3532836

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 July 2022

    Check for updates

    Qualifiers

    • invited-talk
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%
  • Article Metrics

    • Downloads (Last 12 months)28
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format