skip to main content
10.1145/3532836.3536281acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
invited-talk

On Fairness in Face Albedo Estimation

Authors Info & Claims
Published:24 July 2022Publication History

ABSTRACT

Digital avatars will be crucial components for immersive telecommunication, gaming, and the coming metaverse. Unfortunately, current methods for estimating the facial appearance (albedo) are biased to estimate light skin tones. This talk raises awareness of the problem with an analysis of (1) dataset biases and (2) the light/albedo ambiguity. We show how these problems can be ameliorated by recent advances, improving fairness in albedo estimation.

References

  1. V. Blanz and T. Vetter. 1999. A morphable model for the synthesis of 3D faces. In SIGGRAPH. 187–194.Google ScholarGoogle Scholar
  2. J. Buolamwini and T. Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification(Proceedings of Machine Learning Research, Vol. 81). PMLR, 77–91.Google ScholarGoogle Scholar
  3. A. Chardon, I. Cretois, and C. Hourseau. 1991. Skin colour typology and suntanning pathways. Int. J. of Cosmetic Science 13, 4 (1991), 191–208.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Del Bino and F. Bernerd. 2013. Variations in skin colour and the biological consequences of ultraviolet radiation exposure. BJD 169(2013), 33–40.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Egger, W. A. P. Smith, A. Tewari, S. Wuhrer, M. Zollhöfer, T. Beeler, F. Bernard, T. Bolkart, A. Kortylewski, S. Romdhani, C. Theobalt, V. Blanz, and T. Vetter. 2020. 3D Morphable Face Models - Past, Present, and Future. ACM ToG 39, 5 (2020), 157:1–157:38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Feng, T. Bolkart, J. Tesch, M. J. Black, and V. Abrevaya. 2022. Towards Racially Unbiased Skin Tone Estimation via Scene Disambiguation. https://arxiv.org/abs/2205.03962Google ScholarGoogle Scholar
  7. Y. Feng, H. Feng, M. J. Black, and T. Bolkart. 2021. Learning an Animatable Detailed 3D Face Model from In-the-Wild Images. ACM ToG 40, 4 (2021), 88:1–88:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. 2018. InverseFaceNet: Deep monocular inverse face rendering. In CVPR. 4625–4634.Google ScholarGoogle Scholar
  9. T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. 2017. Learning a model of facial shape and expression from 4D scans. ACM ToG 36, 6 (2017), 194:1–194:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. 54, 6 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Ramamoorthi and P. Hanrahan. 2001. A signal-processing framework for inverse rendering. In SIGGRAPH. 117–128.Google ScholarGoogle Scholar
  12. J. Shang, T. Shen, S. Li, L. Zhou, M. Zhen, T. Fang, and L. Quan. 2020. Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency. In ECCV, Vol. 12360. 53–70.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Talks
    July 2022
    108 pages
    ISBN:9781450393713
    DOI:10.1145/3532836

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 July 2022

    Check for updates

    Qualifiers

    • invited-talk
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format