skip to main content
10.1145/354756.354775acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
Article
Free access

Clustering through decision tree construction

Published: 06 November 2000 Publication History
First page of PDF

References

[1]
C. Aggarwal, C. Propiuc, J. L. Wolf, P. S. Yu, and J. S. Park. "Fast algorithms for projected clustering." SIGMOD- 99, 1999.]]
[2]
C. Aggarwal, and P. S. Yu. "Finding generalized projected clusters in high dimensional spaces." SIGMOD-00, 2000.]]
[3]
R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan. "Automatic subspace clustering for high dimensional data for data mining applications." SIGMOD-98, 1998.]]
[4]
P. Arabie and L. J. Hubert. "An overview of combinatorial data analysis." In P. Arabie, L. Hubert, and G.D. Soets, editors, Clustering and Classification, pages 5-63, 1996.]]
[5]
K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft. "When is nearest neighbor meaningful?" Proc.7 th Int. Conf. on Database Theory (ICDT), 1999.]]
[6]
P. Bradley, U. Fayyad and C. Reina. "Scaling clustering algorithms to large databases." KDD-98, 1998.]]
[7]
C. H. Cheng, A. W. Fu and Y Zhang. "Entropy-based subspace clustering for mining numerical data." KDD-99.]]
[8]
R. Dubes and A. K. Jain, "Clustering techniques: the user's dilemma." Pattern Recognition, 8:247-260, 1976.]]
[9]
M. Ester, H.-P. Kriegal, J. Sander and X. Xu. "A densitybased algorithm for discovering clusters in large spatial databases with noise." KDD-96, 1996.]]
[10]
M. Ester, H.-P. Kriegel and X. Xu. "A database interface for clustering in large spatial data bases." KDD-95, 1995.]]
[11]
B. S. Everitt. Cluster analysis. Heinemann, London, 1974.]]
[12]
U. Fayyad, C. Reina, and P. S. Bradley, "Initialization of iterative refinement clustering algorithms." KDD-98, 1998.]]
[13]
D. Fisher. "Knowledge acquisition via incremental conceptual clustering." Machine Learning, 2:139-172, 1987.]]
[14]
J. H. Friedman and N. I. Fisher "Bump hunting in highdimensional data." To appear: Statistics and Computation, 1998.]]
[15]
K. Fukunaga. Introduction to statistical pattern recognition. Academic Press, 1990.]]
[16]
V. Ganti, J. Gehrke, and R. Ramakrishnan, "CACTUS- Clustering categorical data using summaries." KDD-99.]]
[17]
J. Gehrke, R. Ramakrishnan, V. Ganti. "RainForest - A framework for fast decision tree construction of large datasets." VLDB-98, 1998.]]
[18]
J. Gehrke, V. Ganti, R. Ramakrishnan & W-Y. Loh, "BOAT - Optimistic decision tree construction." SIGMOD-99, 1999.]]
[19]
S. Guha, R. Rastogi, and K. Shim. "ROCK: a robust clustering algorithm for categorical attributes." ICDE-99.]]
[20]
S. Guha, R. Rastogi, and K. Shim. "CURE: an efficient clustering algorithm for large databases." SIGMOD-98.]]
[21]
A. Hinneburg and D. A. Keim. "An efficient approach to clustering in large multimedia databases with noise." KDD- 98, 1998.]]
[22]
A. Hinneburg and D. A. Keim. "An optimal grid-clustering: towards breaking the curse of dimensionality in highdimensional clustering." VLDB-99, 1999.]]
[23]
A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice Hall, 1988.]]
[24]
B. Liu, K. Wang, L. Mun and X. Qi. "Using decision tree induction for discovering holes in data." PRICAI-98, 1998.]]
[25]
B. Liu, Y. Xia, and P. S. Yu. "CLTree - Clustering through decision tree construction." Forthcoming, an earlier version appeared as an IBM Research Report RC 21695, 20/3/2000.]]
[26]
R. Ng and J. Han. "Efficient and effective clustering methods for spatial data mining." VLDB-94.]]
[27]
J. R. Quinlan. C4.5: program for machine learning. Morgan Kaufmann, 1992.]]
[28]
J.C. Shafer, R. Agrawal, & M. Mehta. "SPRINT: A scalable parallel classifier for data mining." VLDB-96, 1996.]]
[29]
G. Sheikholeslami, S. Chatterjee and A. Zhang. "WaveCluster: a multi-resolution clustering Approach for very large spatial databases." VLDB-98, 1998.]]
[30]
K. Wang, C. Xu, and B Liu. "Clustering transactions using large items." CIKM-99, 1999.]]
[31]
W. Wang, J. Yang and R. Muntz. "STING: A statistical information grid approach to spatial data mining." VLDB-97, 1997.]]
[32]
X. Xu, M. Ester, H-P. Kriegel and J. Sander. "A nonparametric clustering algorithm for knowledge discovery in large spatial databases." ICDE-98, 1998.]]
[33]
T. Zhang, R. Ramakrishnan and M. Linvy. "BIRCH: an efficient data clustering method for very large databases." SIGMOD-96, 1996.]]

Cited By

View all
  • (2024)Supporting Safety Analysis of Image-processing DNNs through Clustering-based ApproachesACM Transactions on Software Engineering and Methodology10.1145/364367133:5(1-48)Online publication date: 3-Jun-2024
  • (2024)Using a Decision Tree for the Clustering Problem2024 International Russian Smart Industry Conference (SmartIndustryCon)10.1109/SmartIndustryCon61328.2024.10515744(273-279)Online publication date: 25-Mar-2024
  • (2023)Cluster explanation via polyhedral descriptionsProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619178(18652-18666)Online publication date: 23-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '00: Proceedings of the ninth international conference on Information and knowledge management
November 2000
532 pages
ISBN:1581133200
DOI:10.1145/354756
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2000

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

CIKM00
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)520
  • Downloads (Last 6 weeks)55
Reflects downloads up to 23 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Supporting Safety Analysis of Image-processing DNNs through Clustering-based ApproachesACM Transactions on Software Engineering and Methodology10.1145/364367133:5(1-48)Online publication date: 3-Jun-2024
  • (2024)Using a Decision Tree for the Clustering Problem2024 International Russian Smart Industry Conference (SmartIndustryCon)10.1109/SmartIndustryCon61328.2024.10515744(273-279)Online publication date: 25-Mar-2024
  • (2023)Cluster explanation via polyhedral descriptionsProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619178(18652-18666)Online publication date: 23-Jul-2023
  • (2023)A Novel Clustering Method Based on Adjacent Grids SearchingEntropy10.3390/e2509134225:9(1342)Online publication date: 15-Sep-2023
  • (2023)ÇELİK MALZEME SATIN ALMA SÜREÇLERİNDE VERİ MADENCİLİĞİ VE MAKİNE ÖĞRENMESİ UYGULAMALARIDATA MINING AND MACHINE LEARNING APPLICATIONS IN STEEL MATERIALS PURCHASINGMühendislik Bilimleri ve Tasarım Dergisi10.21923/jesd.122163511:3(1174-1189)Online publication date: 28-Sep-2023
  • (2023)Explanation of clustering result based on multi-objective optimizationPLOS ONE10.1371/journal.pone.029296018:10(e0292960)Online publication date: 27-Oct-2023
  • (2023)Unsupervised Two-Stage Root-Cause Analysis With Transfer Learning for Integrated SystemsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2022.317699842:2(497-508)Online publication date: Feb-2023
  • (2023)Density-Based Outlier Detection: Supervised Approach Based on Virtual Points2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT)10.1109/ELIT61488.2023.10311038(97-101)Online publication date: 26-Sep-2023
  • (2023)Nearly tight bounds on the price of explainability for the k-center and the maximum-spacing clustering problemsTheoretical Computer Science10.1016/j.tcs.2023.113744(113744)Online publication date: Feb-2023
  • (2023)The computational complexity of some explainable clustering problemsInformation Processing Letters10.1016/j.ipl.2023.106437(106437)Online publication date: Sep-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media