skip to main content
10.1145/3548606.3560667acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article
Public Access

AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication

Published: 07 November 2022 Publication History

Abstract

Recent works on interactive zero-knowledge (ZK) protocols provide a new paradigm with high efficiency and scalability. However, these protocols suffer from high communication overhead, often linear to the circuit size. In this paper, we proposed two new ZK protocols with communication sublinear to the circuit size, while maintaining a similar level of computational efficiency.
(1) We designed a ZK protocol that can prove B executions of any circuit C in communication O(B + |C|) field elements (with free addition gates), while the best prior work requires a communication of O(B|C|) field elements. Our protocol is enabled by a new tool called as information-theoretic polynomial authentication code, which may be of independent interest.
(2) We developed an optimized implementation of this protocol which shows high practicality. For example, with B=2048, |C|=221, and under 50 Mbps bandwidth and 16 threads, QuickSilver, a state-of-the-art ZK protocol based on vector oblivious linear evaluation (VOLE), can only prove 0.71 million MULT gates per second (mgps) and send one field element per gate; our protocol can prove 15.74 mgps (22x improvement) and send 0.0061 field elements per gate (164x improvement) under the same hardware configuration.
(3) Extending the above idea, we constructed a ZK protocol that can prove a single execution of any circuit C in communication O(|C|3/4). This is the first ZK protocol with sublinear communication for an arbitrary circuit in the VOLE-based ZK family.

References

[1]
Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 2087--2104. https://doi.org/10.1145/3133956.3134104
[2]
Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoît Razet, and Peter Scholl. 2021a. Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 192--211. https://doi.org/10.1145/3460120.3484812
[3]
Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. 2022. Mozℤ2 k arella: Efficient Vector-OLE and Zero-Knowledge Proofs Over ℤ2 k. Cryptology ePrint Archive, Paper 2022/819. https://eprint.iacr.org/2022/819.
[4]
Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021b. Mac'n'Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Virtual Event, 92--122. https://doi.org/10.1007/978-3-030-84259-8_4
[5]
Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011 (LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg, Germany, Tallinn, Estonia, 169--188. https://doi.org/10.1007/978-3-642-20465-4_11
[6]
Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. 2013. Succinct Non-interactive Arguments via Linear Interactive Proofs. In TCC 2013 (LNCS, Vol. 7785), Amit Sahai (Ed.). Springer, Heidelberg, Germany, Tokyo, Japan, 315--333. https://doi.org/10.1007/978-3-642-36594-2_18
[7]
Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing Vector OLE. In ACM CCS 2019, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 896--912. https://doi.org/10.1145/3243734.3243868
[8]
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl. 2019. Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, London, UK, 291--308. https://doi.org/10.1145/3319535.3354255
[9]
Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 868--886. https://doi.org/10.1007/978-3-642-32009-5_50
[10]
Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully homomorphic encryption without bootstrapping. In ITCS 2012, Shafi Goldwasser (Ed.). ACM, Cambridge, MA, USA, 309--325. https://doi.org/10.1145/2090236.2090262
[11]
Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, Las Vegas, NV, USA, 136--145. https://doi.org/10.1109/SFCS.2001.959888
[12]
Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. 2021. Silver: Silent VOLE and Oblivious Transfer from Hardness of Decoding Structured LDPC Codes. In CRYPTO 2021, Part III (LNCS, Vol. 12827), Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Virtual Event, 502--534. https://doi.org/10.1007/978-3-030-84252-9_17
[13]
Ivan Damgr ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. 2017. The TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited. In CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 167--187. https://doi.org/10.1007/978-3-319-63688-7_6
[14]
Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multiparty Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 643--662. https://doi.org/10.1007/978-3-642-32009-5_38
[15]
Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. 2022. Improving Line-Point Zero Knowledge: Two Multiplications for the Price of One. ACM Press.
[16]
Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowledge and Its Applications. In 2nd Conference on Information-Theoretic Cryptography.
[17]
Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https://eprint.iacr.org/2012/144.
[18]
Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 178--191. https://doi.org/10.1145/3460120.3484800
[19]
Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating computation: interactive proofs for muggles. In 40th ACM STOC, Richard E. Ladner and Cynthia Dwork (Eds.). ACM Press, Victoria, BC, Canada, 113--122. https://doi.org/10.1145/1374376.1374396
[20]
Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. 2021. Unconditional Communication-Efficient MPC via Hall's Marriage Theorem. In CRYPTO 2021, Part II (LNCS, Vol. 12826), Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Virtual Event, 275--304. https://doi.org/10.1007/978--3-030--84245--1_10
[21]
Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In CRYPTO 2014, Part I (LNCS, Vol. 8616), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 554--571. https://doi.org/10.1007/978-3-662-44371-2_31
[22]
David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS, Vol. 12107), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb, Croatia, 569--598. https://doi.org/10.1007/978-3-030-45727-3_19
[23]
Yuval Ishai and Anat Paskin. 2007. Evaluating Branching Programs on Encrypted Data. In TCC 2007 (LNCS, Vol. 4392), Salil P. Vadhan (Ed.). Springer, Heidelberg, Germany, Amsterdam, The Netherlands, 575--594. https://doi.org/10.1007/978-3-540-70936-7_31
[24]
Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, Berlin, Germany, 955--966. https://doi.org/10.1145/2508859.2516662
[25]
Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ Great Again. In EUROCRYPT 2018, Part III (LNCS, Vol. 10822), Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Tel Aviv, Israel, 158--189. https://doi.org/10.1007/978-3-319-78372-7_6
[26]
Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. 2012. A New Approach to Practical Active-Secure Two-Party Computation. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 681--700. https://doi.org/10.1007/978-3-642-32009-5_40
[27]
Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. 2019. Distributed Vector-OLE: Improved Constructions and Implementation. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, London, UK, 1055--1072. https://doi.org/10.1145/3319535.3363228
[28]
Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient MultiParty computation toolkit. https://github.com/emp-toolkit.
[29]
Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021a. Wolverine: Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits. In 2021 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 1074--1091. https://doi.org/10.1109/SP40001.2021.00056
[30]
Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021b. Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning. In USENIX Security 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 501--518.
[31]
Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. 2022. AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication. Cryptology ePrint Archive, Paper 2022/566. https://eprint.iacr.org/2022/566.
[32]
Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021a. QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 2986--3001. https://doi.org/10.1145/3460120.3484556
[33]
Kang Yang and Xiao Wang. 2022. Non-Interactive Zero-Knowledge Proofs to Multiple Verifiers. Cryptology ePrint Archive, Report 2022/063. https://eprint.iacr.org/2022/063.
[34]
Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret: Fast Extension for Correlated OT with Small Communication. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 1607--1626. https://doi.org/10.1145/3372297.3417276
[35]
Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. 2021b. TOTA: Fully Homomorphic Encryption with Smaller Parameters and Stronger Security. Cryptology ePrint Archive, Paper 2021/1347. https://eprint.iacr.org/2021/1347 https://eprint.iacr.org/2021/1347.
[36]
Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng Zhang. 2021. Doubly Efficient Interactive Proofs for General Arithmetic Circuits with Linear Prover Time. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 159--177. https://doi.org/10.1145/3460120.3484767

Cited By

View all
  • (2025)An Efficient ZK Compiler from SIMD Circuits to General CircuitsJournal of Cryptology10.1007/s00145-024-09531-438:1Online publication date: 1-Jan-2025
  • (2024)Ligetron: Lightweight Scalable End-to-End Zero-Knowledge Proofs Post-Quantum ZK-SNARKs on a Browser2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00086(1760-1776)Online publication date: 19-May-2024
  • (2024)Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and SmallerAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0935-2_14(436-470)Online publication date: 9-Dec-2024
  • Show More Cited By

Index Terms

  1. AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
    November 2022
    3598 pages
    ISBN:9781450394505
    DOI:10.1145/3548606
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 November 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CCS '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,261 of 6,999 submissions, 18%

    Upcoming Conference

    CCS '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)407
    • Downloads (Last 6 weeks)46
    Reflects downloads up to 28 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)An Efficient ZK Compiler from SIMD Circuits to General CircuitsJournal of Cryptology10.1007/s00145-024-09531-438:1Online publication date: 1-Jan-2025
    • (2024)Ligetron: Lightweight Scalable End-to-End Zero-Knowledge Proofs Post-Quantum ZK-SNARKs on a Browser2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00086(1760-1776)Online publication date: 19-May-2024
    • (2024)Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and SmallerAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0935-2_14(436-470)Online publication date: 9-Dec-2024
    • (2024)++: Optimizing Proofs of Disjunctive Statements in VOLE-Based ZKAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0935-2_12(367-401)Online publication date: 10-Dec-2024
    • (2024)Interactive Line-Point Zero-Knowledge with Sublinear Communication and Linear ComputationAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0935-2_11(337-366)Online publication date: 9-Dec-2024
    • (2024)One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum SignaturesAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0875-1_15(463-493)Online publication date: 10-Dec-2024
    • (2024)Mangrove: A Scalable Framework for Folding-Based SNARKsAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68403-6_10(308-344)Online publication date: 18-Aug-2024
    • (2024)More Efficient Zero-Knowledge Protocols over $$\mathbb {Z}_{2^k}$$ via Galois RingsAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68400-5_13(424-457)Online publication date: 16-Aug-2024
    • (2024)The Hardness of LPN over Any Integer Ring and Field for PCG ApplicationsAdvances in Cryptology – EUROCRYPT 202410.1007/978-3-031-58751-1_6(149-179)Online publication date: 26-May-2024
    • (2024): Shorter Signatures from Regular Syndrome Decoding and VOLE-in-the-HeadPublic-Key Cryptography – PKC 202410.1007/978-3-031-57718-5_8(229-258)Online publication date: 15-Apr-2024
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media