skip to main content
10.1145/3548606.3560688acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article
Public Access

HammerScope: Observing DRAM Power Consumption Using Rowhammer

Published: 07 November 2022 Publication History

Abstract

The constant reduction in memory cell sizes has increased memory density and reduced power consumption, but has also affected its reliability. The Rowhammer attack exploits this reduced reliability to induce bit flips in memory, without directly accessing these bits. Most Rowhammer attacks target software integrity, but some recent attacks demonstrated its use for compromising confidentiality.
Continuing this trend, in this paper we observe that the \rh attack strongly correlates with the memory instantaneous power consumption. We exploit this observation to design HammerScope, a Rowhammer-based attack technique for measuring the power consumption of the memory unit. Because the power consumption correlates with the level of activity of the memory, \hs allows an attacker to infer memory activity.
To demonstrate the offensive capabilities of HammerScope, we use it to mount three information leakage attacks. We first show that \hs can be used to break kernel address-space layout randomization (KASLR). Our second attack uses memory activity as a covert channel for a Spectre attack, allowing us to leak information from the operating system kernel. Finally, we demonstrate the use of HammerScope for performing website fingerprinting, compromising user privacy. Our work demonstrates the importance of finding systematic solutions for Rowhammer attacks.

References

[1]
Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd M. Austin. 2016. ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks. In ASPLOS. 743--755. https://doi.org/10.1145/2872362.2872390
[2]
Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar. 2021. Panopticon: A Complete In-DRAM Rowhammer Mitigation. In DRAMSec. https://dramsec.ethz.ch/papers/panopticon.pdf
[3]
Ishwar Bhati, Mu-Tien Chang, Zeshan Chishti, Shih-Lien Lu, and Bruce L. Jacob. 2016. DRAM Refresh Mechanisms, Penalties, and Trade-Offs. IEEE Trans. Computers, Vol. 65, 1 (2016), 108--121. https://doi.org/10.1109/TC.2015.2417540
[4]
Sarani Bhattacharya and Debdeep Mukhopadhyay. 2016. Curious Case of Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis. In CHES. 602--624. https://doi.org/10.1007/978--3--662--53140--2_29
[5]
Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017. CAn't Touch This: Software-only Mitigation against Rowhammer Attacks targeting Kernel Memory. In USENIX Security. 117--130. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
[6]
Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and Auré lien Francillon. 2018. Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers. In CCS. 163--177. https://doi.org/10.1145/3243734.3243802
[7]
Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant CPUs. In CCS. 769--784. https://doi.org/10.1145/3319535.3363219
[8]
Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In AsiaCCS. 481--493. https://doi.org/10.1145/3320269.3384747
[9]
Kevin K. Chang, Abdullah Giray Yaglikcc i, Saugata Ghose, Aditya Agrawal, Niladrish Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan Hassan, and Onur Mutlu. 2017. Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms. Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, 1 (2017), 10:1--10:42. https://doi.org/10.1145/3084447
[10]
Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks. In IEEE SP. 55--71. https://doi.org/10.1109/SP.2019.00089
[11]
Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. 2010. RAPL: memory power estimation and capping. In ISLPED. 189--194. https://doi.org/10.1145/1840845.1840883
[12]
Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript. In USENIX Security. 1001--1018. https://www.usenix.org/conference/usenixsecurity21/presentation/ridder
[13]
Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A Validation of DRAM RAPL Power Measurements. MEMSYS. 455--470. https://doi.org/10.1145/2989081.2989088
[14]
Steven A. Frank. 2018. Control Theory Tutorial. Springer International Publishing.
[15]
Jeffrey Friedman. 1972. Tempest: A signal problem. NSA Cryptologic Spectrum, Vol. 2, 3 (1972). https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
[16]
Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In IEEE SP. 195--210. https://doi.org/10.1109/SP.2018.00022
[17]
Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass: Exploiting the Many Sides of Target Row Refresh. In IEEE SP. 747--762. https://doi.org/10.1109/SP46214.2022.9833664
[18]
Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic Analysis: Concrete Results. In CHES. 251--261. https://doi.org/10.1007/3--540--44709--1_21
[19]
Daniel Genkin, Noam Nissan, Roei Schuster, and Eran Tromer. 2022. Lend Me Your Ear: Passive Remote Physical Side Channels on PCs. In USENIX Security. 4437--4454. https://outflux.net/slides/2013/lss/kaslr.pdf
[20]
Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off my laptop: physical side-channel key-extraction attacks on PCs - Extended version. J. Cryptogr. Eng., Vol. 5, 2 (2015), 95--112. https://doi.org/10.1007/s13389-015-0100--7
[21]
Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé mentine Maurice, and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In ESSoS. 161--176. https://doi.org/10.1007/978--3--319--62105-0_11
[22]
Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli O'Connell, Wolfgang Schoechl, and Yuval Yarom. 2018. Another Flip in the Wall of Rowhammer Defenses. IEEE SP. 245--261. https://doi.org/10.1109/SP.2018.00031
[23]
Daniel Gruss, Clé mentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard. 2016b. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS. 368--379. https://doi.org/10.1145/2976749.2978356
[24]
Daniel Gruss, Clé mentine Maurice, and Stefan Mangard. 2016a. Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript. In DIMVA. 300--321. https://doi.org/10.1007/978--3--319--40667--1_15
[25]
Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, and Onur Mutlu. 2021. Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications. In MICRO. 1198--1213. https://doi.org/10.1145/3466752.3480110
[26]
Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb: Locking Down the Processor via Rowhammer Attack. In SysTEX. 5:1--5:6. https://doi.org/10.1145/3152701.3152709
[27]
Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi. 2022. BLACKSMITH: Scalable Rowhammering in the Frequency Domain. In IEEE SP. 716--734. https://doi.org/10.1109/SP46214.2022.9833772
[28]
Yichen Jiang, Huifeng Zhu, Dean Sullivan, Xiaolong Guo, Xuan Zhang, and Yier Jin. 2021. Quantifying Rowhammer Vulnerability for DRAM Security. In DAC. 73--78. https://doi.org/10.1109/DAC18074.2021.9586119
[29]
Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikcc i, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques. In ISCA. 638--651. https://doi.org/10.1109/ISCA45697.2020.00059
[30]
Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In ISCA. 361--372. https://doi.org/10.1109/ISCA.2014.6853210
[31]
Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis. In CRYPTO. 388--397. https://doi.org/10.1007/3--540--48405--1_25
[32]
Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double: Hammering from the Next Row Over. In USENIX Security. 3807--3824. https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
[33]
Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-Origin Pixel Stealing: Timing Attacks Using CSS Filters. In CCS. 1055--1062. https://doi.org/10.1145/2508859.2516712
[34]
Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed: Reading Bits in Memory Without Accessing Them. In IEEE SP. 695--711. https://doi.org/10.1109/SP40000.2020.00020
[35]
Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. 2019. TWiCe: Preventing Row-hammering by Exploiting Time Window Counters. In ISCA. 385--396. https://doi.org/10.1145/3307650.3322232
[36]
Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Philipose, Mohit Tiwari, and Mark Silberstein. 2018. Power to peep-all: Inference Attacks by Malicious Batteries on Mobile Devices. PoPETs, Vol. 2018, 4 (2018), 141--158. https://doi.org/10.1515/popets-2018-0036
[37]
Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch Attacks through Power and Time. In USENIX Security. 643--660. https://www.usenix.org/conference/usenixsecurity22/presentation/lipp
[38]
Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power Side-Channel Attacks on x86. In IEEE SP. 355--371. https://doi.org/10.1109/SP40001.2021.00063
[39]
Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga, Clé mentine Maurice, and Daniel Gruss. 2020. Nethammer: Inducing Rowhammer Faults through Network Requests. In EuroS&P Workshops. 710--719. https://doi.org/10.1109/EuroSPW51379.2020.00102
[40]
Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci. 2021. Stop! Hammer Time: Rethinking our Approach to Rowhammer Mitigations. In HotOS. 88--95. https://doi.org/10.1145/3458336.3465295
[41]
Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer.
[42]
Hector Marco-Gisbert and Ismael Ripoll Ripoll. 2019. Address space layout randomization next generation. Applied Sciences, Vol. 9, 14 (2019), 2928. https://doi.org/10.3390/app9142928
[43]
Colin O'Flynn and Alex Dewar. 2019. On-Device Power Analysis Across Hardware Security Domains. Stop Hitting Yourself. IACR Trans. Cryptogr. Hardw. Embed. Syst., Vol. 2019, 4 (2019), 126--153. https://doi.org/10.13154/tches.v2019.i4.126--153
[44]
Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia D'i az. 2015. The Leaking Battery - A Privacy Analysis of the HTML5 Battery Status API. In DPM/QASA at ESORICS. 254--263. https://doi.org/10.1007/978--3--319--29883--2_18
[45]
Yossef Oren and Adi Shamir. 2007. Remote Password Extraction from RFID Tags. IEEE Trans. Computers, Vol. 56, 9 (2007), 1292--1296. https://doi.org/10.1109/TC.2007.1050
[46]
Peter Pessl, Daniel Gruss, Clé mentine Maurice, Michael Schwarz, and Stefan Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX Security. 565--581. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
[47]
Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack. In USENIX Security. 1--18. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
[48]
Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi Baradaran Tahoori. 2018. An inside job: Remote power analysis attacks on FPGAs. In DATE. 1111--1116. https://doi.org/10.23919/DATE.2018.8342177
[49]
Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. 2021. Speculative dereferencing of registers: Reviving Foreshadow. In FC. 311--330. https://doi.org/10.1007/978--3--662--64322--8_15
[50]
Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug to gain kernel privileges. https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html. (2015).
[51]
Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making DRAM Stronger Against Row Hammering. In DAC. 55:1--55:6. https://doi.org/10.1145/3061639.3062281
[52]
Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018a. Defeating Software Mitigations Against Rowhammer: A Surgical Precision Hammer. In RAID. 47--66. https://doi.org/10.1007/978--3-030-00470--5_3
[53]
Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018b. Throwhammer: Rowhammer Attacks over the Network and Defenses. In USENIX ATC. 213--226. https://www.usenix.org/conference/atc18/presentation/tatar
[54]
Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G. Shin. 2022. SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks. In IEEE SP. 681--698. https://doi.org/10.1109/SP46214.2022.9833802
[55]
Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In CCS. 178--195. https://doi.org/10.1145/3243734.3243822
[56]
Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In CCS. 1675--1689. https://doi.org/10.1145/2976749.2978406
[57]
Victor Van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrishnan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert Bos, and Kaveh Razavi. 2018. GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM. In DIMVA. 92--113. https://doi.org/10.1007/978--3--319--93411--2_5
[58]
VLSI System Design Corporation. 2017. Effect of Coupling Capacitance. (2017). https://www.vlsisystemdesign.com/effect-of-coupling-capacitance/
[59]
Andrew J. Walker, Sungkwon Lee, and Dafna Beery. 2021. On DRAM Rowhammer and the Physics of Insecurity. IEEE Transactions on Electron Devices, Vol. 68, 4 (2021), 1400--1410. https://doi.org/10.1109/TED.2021.3060362
[60]
Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas Eisenbarth, and Berk Sunar. 2020. JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms. IACR Trans. Cryptogr. Hardw. Embed. Syst., Vol. 2020, 3 (2020), 169--195. https://doi.org/10.13154/tches.v2020.i3.169--195
[61]
Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In USENIX Security. 19--35. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
[62]
Abdullah Giray Yaglikcc i, Haocong Luo, Geraldo F. de Oliviera, Ataberk Olgun, Minesh Patel, Jisung Park, Hasan Hassan, Jeremie S. Kim, Lois Orosa, and Onur Mutlu. 2022. Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices. In DSN. 475--487. https://doi.org/10.1109/DSN53405.2022.00054
[63]
Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Kiran S. Balagani. 2017. On Inferring Browsing Activity on Smartphones via USB Power Analysis Side-Channel. IEEE Trans. Inf. Forensics Secur., Vol. 12, 5 (2017), 1056--1066. https://doi.org/10.1109/TIFS.2016.2639446
[64]
Jung Min You and Joon-Sung Yang. 2019. MRLoc: Mitigating Row-hammering Based on Memory Locality. In DAC. 19. https://doi.org/10.1145/3316781.3317866
[65]
Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval Yarom. 2020. PThammer: Cross-User-Kernel-Boundary Rowhammer through Implicit Accesses. In MICRO. 28--41. https://doi.org/10.1109/MICRO50266.2020.00016
[66]
Kenneth M. Zick, Meeta Srivastav, Wei Zhang, and Matthew French. 2013. Sensing Nanosecond-Scale Voltage Attacks and Natural Transients in FPGAs. In FPGA. 101--104. https://doi.org/10.1145/2435264.2435283 io

Cited By

View all
  • (2024)Leaky Address Masking: Exploiting Unmasked Spectre Gadgets with Noncanonical Address Translation2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00158(3773-3788)Online publication date: 19-May-2024
  • (2024)BreakHammer: Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)10.1109/MICRO61859.2024.00072(915-934)Online publication date: 2-Nov-2024
  • (2024)DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00083(1097-1111)Online publication date: 29-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
November 2022
3598 pages
ISBN:9781450394505
DOI:10.1145/3548606
© 2022 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 November 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. rowhammer
  2. side-channel attack

Qualifiers

  • Research-article

Funding Sources

Conference

CCS '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,261 of 6,999 submissions, 18%

Upcoming Conference

CCS '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)499
  • Downloads (Last 6 weeks)40
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Leaky Address Masking: Exploiting Unmasked Spectre Gadgets with Noncanonical Address Translation2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00158(3773-3788)Online publication date: 19-May-2024
  • (2024)BreakHammer: Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)10.1109/MICRO61859.2024.00072(915-934)Online publication date: 2-Nov-2024
  • (2024)DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00083(1097-1111)Online publication date: 29-Jun-2024
  • (2024)CoMeT: Count-Min-Sketch-based Row Tracking to Mitigate RowHammer at Low Cost2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)10.1109/HPCA57654.2024.00050(593-612)Online publication date: 2-Mar-2024
  • (2024)Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)10.1109/HPCA57654.2024.00048(560-577)Online publication date: 2-Mar-2024
  • (2024)SegScope: Probing Fine-grained Interrupts via Architectural Footprints2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)10.1109/HPCA57654.2024.00039(424-438)Online publication date: 2-Mar-2024
  • (2024)Read Disturbance in High Bandwidth Memory: A Detailed Experimental Study on HBM2 DRAM Chips2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)10.1109/DSN58291.2024.00022(75-89)Online publication date: 24-Jun-2024
  • (2024)SpyHammer: Understanding and Exploiting RowHammer Under Fine-Grained Temperature VariationsIEEE Access10.1109/ACCESS.2024.340938912(80986-81003)Online publication date: 2024
  • (2023)An Experimental Analysis of RowHammer in HBM2 DRAM Chips2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)10.1109/DSN-S58398.2023.00042(151-156)Online publication date: Jul-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media