skip to main content
research-article

Conjunctive Queries: Unique Characterizations and Exact Learnability

Published:06 November 2022Publication History
Skip Abstract Section

Abstract

We answer the question of which conjunctive queries are uniquely characterized by polynomially many positive and negative examples and how to construct such examples efficiently. As a consequence, we obtain a new efficient exact learning algorithm for a class of conjunctive queries. At the core of our contributions lie two new polynomial-time algorithms for constructing frontiers in the homomorphism lattice of finite structures. We also discuss implications for the unique characterizability and learnability of schema mappings and of description logic concepts.

REFERENCES

  1. [1] Alexe Bogdan, Cate Balder ten, Kolaitis Phokion G., and Tan Wang-Chiew. 2011. Characterizing schema mappings via data examples. ACM Trans. Datab. Syst. 36, 4 (Dec. 2011). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Angluin Dana. 1988. Queries and concept learning. Mach. Learn. 2, 4 (Apr. 1988), 319342. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Armstrong William Ward. 1974. Dependency structures of data base relationships. In IFIP Congress.Google ScholarGoogle Scholar
  4. [4] Baader Franz, Horrocks Ian, Lutz Carsten, and Sattler Ulrike. 2017. An Introduction to Description Logic. Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Baader Franz and Nutt Werner. 2003. Basic Description Logics. Cambridge University Press, 4395.Google ScholarGoogle Scholar
  6. [6] Bárány Vince, Gottlob Georg, and Otto Martin. 2014. Querying the guarded fragment. Logic. Meth. Comput. Sci. 10, 2 (2014). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Barceló Pablo and Romero Miguel. 2017. The complexity of reverse engineering problems for conjunctive queries. In Proceedings of the 20th International Conference on Database Theory. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:17.Google ScholarGoogle Scholar
  8. [8] Blog Google. 2020. A reintroduction to our Knowledge Graph and knowledge panels. https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/.Google ScholarGoogle Scholar
  9. [9] Bonifati Angela, Ciucanu Radu, and Lemay Aurélien. 2015. Learning path queries on graph databases. In Proceedings of the 18th International Conference on Extending Database Technology. OpenProceedings.org, 109120.Google ScholarGoogle Scholar
  10. [10] Bonifati Angela, Ciucanu Radu, and Staworko Slawek. 2016. Learning join queries from user examples. ACM Trans. Datab. Syst. 40, 4 (2016), 24:1–24:38.Google ScholarGoogle Scholar
  11. [11] Chandra Ashok K. Chandra and Merlin Philip M.. 1977. Optimal implementation of conjunctive queries in relational data bases. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 7790.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Cohen William W.. 1993. Cryptographic limitations on learning one-clause logic programs. In Proceedings of the 11th National Conference on Artificial Intelligence. AAAI Press/The MIT Press, 8085.Google ScholarGoogle Scholar
  13. [13] Cohen William W.. 1994. PAC-learning nondeterminate clauses. In Proceedings of the 12th National Conference on Artificial Intelligence. AAAI Press/The MIT Press, 676681.Google ScholarGoogle Scholar
  14. [14] Cohen William W.. 1995. PAC-learning non-recursive prolog clauses. Artif. Intell. 79, 1 (1995), 138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Dalmau Víctor, Kolaitis Phokion G., and Vardi Moshe Y.. 2002. Constraint satisfaction, bounded treewidth, and finite-variable logics. In Principles and Practice of Constraint Programming - CP 2002, Hentenryck Pascal Van (Ed.). Springer Berlin, 310326.Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Fagin Ronald. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30, 3 (July 1983), 514550. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Fagin Ronald, Kolaitis Phokion, Nash Alan, and Popa Lucian. 2008. Towards a theory of schema-mapping optimization. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 3342. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Foniok Jan, Nesetril Jaroslav, and Tardif Claude. 2008. Generalised dualities and maximal finite antichains in the homomorphism order of relational structures. Eur. J. Comb. 29, 4 (2008), 881899.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Funk Maurice, Jung Jean Christoph, and Lutz Carsten. 2021. Actively learning concepts and conjunctive queries under ELr-ontologies. In Proceedings of the International Joint Conference on Artificial Intelligence.Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Funk Maurice, Jung Jean Christoph, and Lutz Carsten. 2022. Frontiers and exact learning of ELI queries under DL-lite ontologies. In Proceedings of the 31st International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 26272633. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Gottlob Georg and Senellart Pierre. 2010. Schema mapping discovery from data instances. J. ACM 57, 2 (2010), 6:1–6:37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Haussler David. 1989. Learning conjunctive concepts in structural domains. Mach. Learn. 4 (1989), 740.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Hell Pavol and Nešetřil Jaroslav. 1992. The core of a graph. Discr. Math. 109 (1992), 117126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Hell Pavol and Nešetřil Jaroslav. 2004. Graphs and Homomorphisms. Oxford University Press.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Hirata Kouichi. 2000. On the hardness of learning acyclic conjunctive queries. In Proceedings of the 11th International Conference on Algorithmic Learning Theory. Springer, 238251.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Kazana Wojtek and Segoufin Luc. 2020. First-order queries on classes of structures with bounded expansion. Logic. Meth. Comput. Sci. 16, 1 (Feb. 2020).Google ScholarGoogle Scholar
  27. [27] Kolaitis Phokion G.. 2005. Schema mappings, data exchange, and metadata management. In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’05). Association for Computing Machinery, New York, NY, 6175. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [28] Mannila Heikki and Räihä Kari-Jouko. 1986. Test data for relational queries. In Proceedings of the Symposium on Principles of Database Systems. 217223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Marx Maarten. 2002. Narcissists, stepmothers and spies. In Proceedings of the International Workshop on Description Logics. CEUR-WS.org.Google ScholarGoogle Scholar
  30. [30] Nešetřil Jaroslav and Mendez Patrice Ossona de. 2008. Grad and classes with bounded expansion III. Restricted graph homomorphism dualities. Eur. J. Combinat. 29, 4 (2008), 1012–.1024. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Nešetřil Jaroslav and Mendez Patrice Ossona de. 2008. Grad and classes with bounded expansion I. decompositions. Eur. J. Combinat. 29, 3 (2008), 760776. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Nešetřil Jaroslav and Mendez Patrice Ossona de. 2012. Sparsity (Graphs, Structures, and Algorithms). Vol. 28. Springer. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Nešetřil Jaroslav and Tardif Claude. 2000. Duality theorems for finite structures (characterising gaps and good characterisations). J. Combinat. Theor., Series B 80, 1 (2000), 8097. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Nešetřil Jaroslav and Tardif Claude. 2005. Short answers to exponentially long questions: Extremal aspects of homomorphism duality. SIAM J. Discret. Math. 19, 4 (Aug. 2005), 914920. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Ozaki Ana. 2020. Learning description logic ontologies: Five approaches. where do they stand? KI - Künstliche Intelligenz (04 2020). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Staworko Slawek and Wieczorek Piotr. 2012. Learning twig and path queries. In Proceedings of the 15th International Conference on Database Theory. ACM, 140154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Staworko Slawomir and Wieczorek Piotr. 2015. Characterizing XML twig queries with examples. In Proceedings of the International Conference on Database Theory. https://hal.inria.fr/hal-01205417.Google ScholarGoogle Scholar
  38. [38] Cate Balder ten, Chiticariu Laura, Kolaitis Phokion, and Tan Wang-Chiew. 2009. Laconic schema mappings: Computing the core with SQL queries. Proc. VLDB Endow. 2, 1 (Aug. 2009), 10061017. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Cate Balder ten and Dalmau Víctor. 2015. The product homomorphism problem and applications. In Proceedings of the 18th International Conference on Database Theory. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 161176.Google ScholarGoogle Scholar
  40. [40] Cate Balder ten and Dalmau Victor. 2021. Conjunctive queries: Unique characterizations and exact learnability. In Proceedings of the International Conference on Database Theory. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.Google ScholarGoogle Scholar
  41. [41] Cate Balder ten, Dalmau Víctor, and Kolaitis Phokion G.. 2013. Learning schema mappings. ACM Trans. Datab. Syst. 38, 4 (2013), 28:1–28:31. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Cate Balder ten, Kolaitis Phokion G., Qian Kun, and Tan Wang-Chiew. 2018. Active learning of GAV schema mappings. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 355368. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Weiss Yaacov Y. and Cohen Sara. 2017. Reverse engineering SPJ-queries from examples. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 151166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Willard Ross. 2010. Testing expressibility is hard. In Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming. Springer, 923.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Conjunctive Queries: Unique Characterizations and Exact Learnability

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Database Systems
          ACM Transactions on Database Systems  Volume 47, Issue 4
          December 2022
          176 pages
          ISSN:0362-5915
          EISSN:1557-4644
          DOI:10.1145/3567466
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 November 2022
          • Online AM: 31 August 2022
          • Accepted: 24 August 2022
          • Revised: 26 May 2022
          • Received: 30 November 2021
          Published in tods Volume 47, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format