skip to main content
10.1145/3563657.3595983acmconferencesArticle/Chapter ViewAbstractPublication PagesdisConference Proceedingsconference-collections
research-article
Open Access

Designing a Sustainable Material for 3D Printing with Spent Coffee Grounds

Published:10 July 2023Publication History

ABSTRACT

The widespread adoption of 3D printers exacerbates existing environmental challenges as these machines increase energy consumption, waste output, and the use of plastics. Material choice for 3D printing is tightly connected to these challenges, and as such researchers and designers are exploring sustainable alternatives. Building on these efforts, this work explores using spent coffee grounds as a sustainable material for prototyping with 3D printing. This material, in addition to being compostable and recyclable, can be easily made and printed at home. We describe the material in detail, including the process of making it from readily available ingredients, its material characteristics and its printing parameters. We then explore how it can support sustainable prototyping practices as well as HCI applications. In reflecting on our design process, we discuss challenges and opportunities for the HCI community to support sustainable prototyping and personal fabrication. We conclude with a set of design considerations for others to weigh when exploring sustainable materials for 3D printing and prototyping.

References

  1. Jerry Ajay, Aditya Singh Rathore, Chen Song, Chi Zhou, and Wenyao Xu. 2016. Don’t Forget Your Electricity Bills! An Empirical Study of Characterizing Energy Consumption of 3D Printers. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, Hong Kong) (APSys ’16). Association for Computing Machinery, New York, NY, USA, Article 7, 8 pages. https://doi.org/10.1145/2967360.2967377Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. All3DP. 2022. Best 3D Printer Filament: The Main Types in 2022. https://all3dp.com/1/3d-printer-filament-types-3d-printing-3d-filament/Google ScholarGoogle Scholar
  3. Rita C. Alves, Francisca Rodrigues, Maria Antónia Nunes, Ana F. Vinha, and M. Beatriz P.P. Oliveira. 2017. State of the art in coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications (1 2017), 1–26. https://doi.org/10.1016/B978-0-12-811290-8.00001-3 Pg. 17 (PDF pg) - SCG are main by product of coffee brew.Google ScholarGoogle ScholarCross RefCross Ref
  4. Byoungkwon An, Ye Tao, Jianzhe Gu, Tingyu Cheng, Xiang’Anthony’ Chen, Xiaoxiao Zhang, Wei Zhao, Youngwook Do, Shigeo Takahashi, Hsiang-Yun Wu, 2018. Thermorph: Democratizing 4D printing of self-folding materials and interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 260.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Andry, T. Yamamoto, T. Irie, S. Moritani, M. Inoue, and H. Fujiyama. 2009. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. Journal of Hydrology 373 (6 2009), 177–183. Issue 1-2. https://doi.org/10.1016/J.JHYDROL.2009.04.020Google ScholarGoogle ScholarCross RefCross Ref
  6. Michael F Ashby and David RH Jones. 2012. Engineering materials 1: an introduction to properties, applications and design. Vol. 1. Elsevier.Google ScholarGoogle Scholar
  7. Serdar Asut. 2022. Materiom : Olive pomace - 3D print material. https://materiom.org/recipe/593Google ScholarGoogle Scholar
  8. Lina F. Ballesteros, José A. Teixeira, and Solange I. Mussatto. 2014. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology 7 (12 2014), 3493–3503. Issue 12. https://doi.org/10.1007/S11947-014-1349-ZGoogle ScholarGoogle ScholarCross RefCross Ref
  9. J. G. Batelaan, C. G. van Ginkel, and F. Balk. 1992. Carboxymethylcellulose (CMC). Handbook of Environmental Chemistry 3 (1992), 329–336. https://doi.org/10.1007/978-3-540-47108-0_11Google ScholarGoogle ScholarCross RefCross Ref
  10. Patrick Baudisch and Stefanie Mueller. 2017. Personal Fabrication. Foundations and Trends® in Human–Computer Interaction 10 (2017), 165–293. Issue 3–4. https://doi.org/10.1561/1100000055Google ScholarGoogle ScholarCross RefCross Ref
  11. Sachin N. Baxi, Jay M. Portnoy, Désirée Larenas-Linnemann, Wanda Phipatanakul, Charles Barnes, Carl Grimes, W. Elliott Horner, Kevin Kennedy, Estelle Levetin, J. David Miller, James Scott, and Brock Williams. 2016. Exposure and Health Effects of Fungi on Humans. The journal of allergy and clinical immunology. In practice 4 (5 2016), 396. Issue 3. https://doi.org/10.1016/J.JAIP.2016.01.008Google ScholarGoogle ScholarCross RefCross Ref
  12. Fiona Bell, Netta Ofer, and Mirela Alistar. 2022. ReClaym our Compost: Biodegradable Clay for Intimate Making. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, 2022-04-29) (CHI ’22). Association for Computing Machinery, 1–15. https://doi.org/10.1145/3491102.3517711Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Adel Benchabane and Karim Bekkour. 2008. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science 2008 286:10 286 (5 2008), 1173–1180. Issue 10. https://doi.org/10.1007/S00396-008-1882-2Google ScholarGoogle ScholarCross RefCross Ref
  14. Teresa Berninger, Natalie Dietz, and Óscar González López. 2021. Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics. Microbial Biotechnology (2021). https://doi.org/10.1111/1751-7915.13867 Xanthan gum increase water retention.Google ScholarGoogle ScholarCross RefCross Ref
  15. Samarthya Bhagia, Kamlesh Bornani, Ruchi Agarwal, Alok Satlewal, Jaroslav Ďurkovič, Rastislav Lagaňa, Meher Bhagia, Chang Geun Yoo, Xianhui Zhao, Vlastimil Kunc, Yunqiao Pu, Soydan Ozcan, and Arthur J. Ragauskas. 2021. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today 24 (9 2021), 101078. https://doi.org/10.1016/J.APMT.2021.101078Google ScholarGoogle ScholarCross RefCross Ref
  16. Emma Bladyka. 2015. Coffee brewing: Wetting, hydrolysis & extraction revisited. Specialty Coffee Association of America (2015).Google ScholarGoogle Scholar
  17. Eli Blevis. 2007. Sustainable Interaction Design: Invention & Disposal, Renewal & Reuse. Association for Computing Machinery, New York, NY, USA, 503–512.Google ScholarGoogle Scholar
  18. Leah Buechley and Ruby Ta. 2023. 3D Printable Play-Dough: New Biodegradable Materials and Creative Possibilities for Digital Fabrication. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 850, 15 pages. https://doi.org/10.1145/3544548.3580813Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ana Cervera-Mata, Silvia Pastoriza, José Ángel Rufián-Henares, Jesús Párraga, Juan Manuel Martín-García, and Gabriel Delgado. 2017. Impact of spent coffee grounds as organic amendment on soil fertility and lettuce growth in two Mediterranean agricultural soils. Archives of Agronomy and Soil Science 64 (5 2017), 790–804. Issue 6. https://doi.org/10.1080/03650340.2017.1387651Google ScholarGoogle ScholarCross RefCross Ref
  20. Yooeun Chae and Youn-Joo An. 2018. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental pollution 240 (2018), 387–395.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yu-Chung Chang, Yao Chen, Jialong Ning, Cheng Hao, Mitch Rock, Maher Amer, Shuo Feng, Mojtaba Falahati, Li-Ju Wang, Roland K. Chen, Jinwen Zhang, Jow-Lian Ding, and Lei Li. 2019. No Such Thing as Trash: A 3D-Printable Polymer Composite Composed of Oil-Extracted Spent Coffee Grounds and Polylactic Acid with Enhanced Impact Toughness. ACS Sustainable Chemistry & Engineering 7 (9 2019), 15304–15310. Issue 18. https://doi.org/10.1021/ACSSUSCHEMENG.9B02527Google ScholarGoogle ScholarCross RefCross Ref
  22. Leslie Cooperband. 2002. The art and science of composting. Center for Integrated agricultural systems (2002). https://www.iowadnr.gov/Portals/idnr/uploads/waste/artandscienceofcomposting.pdfGoogle ScholarGoogle Scholar
  23. Rebeca Cruz, Eulália Mendes, Álvaro Torrinha, Simone Morais, José Alberto Pereira, Paula Baptista, and Susana Casal. 2015. Revalorization of spent coffee residues by a direct agronomic approach. Food Research International 73 (7 2015), 190–196. https://doi.org/10.1016/J.FOODRES.2014.11.018Google ScholarGoogle ScholarCross RefCross Ref
  24. Mary Ann Curran. 2010. Biobased Materials. Kirk-Othmer Encyclopedia of Chemical Technology (3 2010). https://doi.org/10.1002/0471238961.BIOBCURR.A01/FULLGoogle ScholarGoogle ScholarCross RefCross Ref
  25. ASTM D638-14. 2014. ASTM International. Standard test method for tensile properties of plastics (2014).Google ScholarGoogle Scholar
  26. Kristin N. Dew, Samantha Shorey, and Daniela Rosner. 2018. Making within limits: Towards salvage fabrication. ACM International Conference Proceeding Series (5 2018). https://doi.org/10.1145/3232617.3232626Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nancy Dickson, Thomas Richard, and Robert Kozlowski. 1991. Composting to reduce the waste stream-A guide to small scale food and yard waste composting. Northeast regional agricultural engineering service. https://ecommons.cornell.edu/handle/1813/44736Google ScholarGoogle Scholar
  28. Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir. 2010. Mapping the Landscape of Sustainable HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New York, NY, USA, 1975–1984. https://doi.org/10.1145/1753326.1753625Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. United States Enivironmental Protection Agency (EPA). 2012. Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2012. https://www.epa.gov/sites/default/files/2015-09/documents/2012_msw_fs.pdfGoogle ScholarGoogle Scholar
  30. Marcus Eriksen, Laurent CM Lebreton, Henry S Carson, Martin Thiel, Charles J Moore, Jose C Borerro, Francois Galgani, Peter G Ryan, and Julia Reisser. 2014. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS one 9, 12 (2014), e111913.Google ScholarGoogle ScholarCross RefCross Ref
  31. Jeremy Faludi, Natasha Cline-Thomas, and Shardul Agrawala. 2017. 3D printing and its environmental implications. The Next Production Revolution. Implications for Governments and Businesses (2017).Google ScholarGoogle Scholar
  32. Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, and Leulekal Kassaye. 2015. Does material choice drive sustainability of 3D printing?International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering (2015).Google ScholarGoogle Scholar
  33. Jeremy Faludi, Corrie M. Van Sice, and Yuan Shi. 2022. Materiom : Mica bioprint. https://materiom.org/recipe/586Google ScholarGoogle Scholar
  34. Jeremy Faludi, Corrie M. Van Sice, Yuan Shi, Justin Bower, and Owen M.K. Brooks. 2019. Novel materials can radically improve whole-system environmental impacts of additive manufacturing. Journal of Cleaner Production 212 (2019), 1580–1590.Google ScholarGoogle ScholarCross RefCross Ref
  35. Francofil. 2022. About Francofil - Francofil | 3D Filament Expert. https://francofil.fr/Google ScholarGoogle Scholar
  36. Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon Blair, and Adrian Friday. 2021. The climate impact of ICT: A review of estimates, trends and regulations. arXiv preprint arXiv:2102.02622 (2021).Google ScholarGoogle Scholar
  37. F Garcıa-Ochoa, VE Santos, JA Casas, and E Gómez. 2000. Xanthan gum: production, recovery, and properties. Biotechnology advances 18, 7 (2000), 549–579.Google ScholarGoogle Scholar
  38. Markos Georgiou. 2022. Materiom: Oyster Shell | Alginate Composite 3D print. https://materiom.org/recipe/609 Related Paper: Biomimetic Regulation of Microbially Induced Calcium Carbonate Precipitation Involving Immobilization of Sporasarcina pasteurii by Sodium Alginate.Google ScholarGoogle Scholar
  39. Mamdouh T Ghannam and M Nabil Esmail. 1997. Rheological Properties of Carboxymethyl Cellulose. J Appl Polym Sci 64 (1997), 289–301. https://doi.org/10.1002/(SICI)1097-4628(19970411)64:2Google ScholarGoogle ScholarCross RefCross Ref
  40. Teresa Gomes, J.A. Pereira, Elsa Ramalhosa, Susana Casal, and Paula Baptista. 2014. Effect of fresh and composted spent coffee grounds on lettuce growth, photosynthetic pigments and mineral composition. VII Congreso Ibérico de Agroingeniería y Ciencias Horticolas (2014), 1–5. https://bibliotecadigital.ipb.pt/handle/10198/8719 https://bibliotecadigital.ipb.pt/handle/10198/8719?mode=fullGoogle ScholarGoogle Scholar
  41. Jun Gong, Olivia Seow, Cedric Honnet, Jack Forman, and Stefanie Mueller. 2021. MetaSense: Integrating Sensing Capabilities into Mechanical Metamaterial. In The 34th Annual ACM Symposium on User Interface Software and Technology (New York, NY, USA, 2021-10-12) (UIST ’21). Association for Computing Machinery, 1063–1073. https://doi.org/10.1145/3472749.3474806Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. John AS Green. 2007. Aluminum recycling and processing for energy conservation and sustainability. ASM International.Google ScholarGoogle Scholar
  43. Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar Bechtold, Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith. 2017. Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). Association for Computing Machinery, New York, NY, USA, 3293–3315. https://doi.org/10.1145/3025453.3025808Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jianzhe Gu, David E Breen, Jenny Hu, Lifeng Zhu, Ye Tao, Tyson Van de Zande, Guanyun Wang, Yongjie Jessica Zhang, and Lining Yao. 2019. Geodesy: Self-rising 2.5 D Tiles by Printing along 2D Geodesic Closed Path. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. C. B. Hollabaugh, Leland H. Burt, and Anna Peterson Walsh. 1945. Carboxymethylcellulose. Uses and Applications. Industrial & Engineering Chemistry 37 (10 1945), 943–947. Issue 10. https://doi.org/10.1021/IE50430A015Google ScholarGoogle ScholarCross RefCross Ref
  46. Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, and Aleksandr Ovsianikov. 2016. Bioink properties before, during and after 3D bioprinting. Biofabrication 8 (9 2016). Issue 3. https://doi.org/10.1088/1758-5090/8/3/032002Google ScholarGoogle ScholarCross RefCross Ref
  47. Elaine M. Huang and Khai N. Truong. 2008. Breaking the Disposable Technology Paradigm: Opportunities for Sustainable Interaction Design for Mobile Phones(CHI ’08). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1357054.1357110Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Christopher C. Ibeh. 2011. Thermoplastic materials: properties, manufacturing methods, and applications. CRC Press.Google ScholarGoogle Scholar
  49. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA, 2016-10-16) (UIST ’16). Association for Computing Machinery, 529–539. https://doi.org/10.1145/2984511.2984540Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zhen Jiang, Broden Diggle, Ming Li Tan, Jekaterina Viktorova, Christopher W Bennett, and Luke A. Connal. 2020. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. 7, 17 (2020), 2001379. https://doi.org/10.1002/advs.202001379 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.202001379.Google ScholarGoogle ScholarCross RefCross Ref
  51. Ana Jiménez-Zamora, Silvia Pastoriza, and José A. Rufián-Henares. 2015. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT - Food Science and Technology 61 (4 2015), 12–18. Issue 1. https://doi.org/10.1016/J.LWT.2014.11.031Google ScholarGoogle ScholarCross RefCross Ref
  52. Rhys Jones, Patrick Haufe, Edward Sells, Pejman Iravani, Vik Olliver, Chris Palmer, and Adrian Bowyer. 2011. RepRap–the replicating rapid prototyper. Robotica 29, 1 (2011), 177–191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Barbara Katzbauer. 1998. Properties and applications of xanthan gum. Polymer Degradation and Stability 59 (1 1998), 81–84. Issue 1-3. https://doi.org/10.1016/S0141-3910(97)00180-8 XG biodegrades fully in 2 days.Google ScholarGoogle ScholarCross RefCross Ref
  54. Mohammad Reza Khosravani and Tamara Reinicke. 2020. On the environmental impacts of 3D printing technology. Applied Materials Today 20 (2020), 100689.Google ScholarGoogle ScholarCross RefCross Ref
  55. Sunyoung Kim and Eric Paulos. 2011. Practices in the Creative Reuse of E-Waste. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY, USA, 2395–2404. https://doi.org/10.1145/1978942.1979292Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Marion Koelle, Madalina Nicolae, Aditya Shekhar Nittala, Marc Teyssier, and Jürgen Steimle. 2022. Prototyping Soft Devices with Interactive Bioplastics. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (New York, NY, USA, 2022-10-28) (UIST ’22). Association for Computing Machinery, 1–16. https://doi.org/10.1145/3526113.3545623Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Cindy Kohtala and Sampsa Hyysalo. 2015. Anticipated environmental sustainability of personal fabrication. Journal of Cleaner Production 99 (2015), 333–344.Google ScholarGoogle ScholarCross RefCross Ref
  58. Jeffrey J Kolstad, Erwin TH Vink, Bruno De Wilde, and Lies Debeer. 2012. Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polymer Degradation and Stability 97, 7 (2012), 1131–1141.Google ScholarGoogle ScholarCross RefCross Ref
  59. Robert Kovacs, Alexandra Ion, Pedro Lopes, Tim Oesterreich, Johannes Filter, Philipp Otto, Tobias Arndt, Nico Ring, Melvin Witte, Anton Synytsia, and Patrick Baudisch. 2018. TrussFormer: 3D Printing Large Kinetic Structures. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 113–125. https://doi.org/10.1145/3242587.3242607Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Robert Kovacs, Anna Seufert, Ludwig Wall, Hsiang-Ting Chen, Florian Meinel, Willi Müller, Sijing You, Maximilian Brehm, Jonathan Striebel, Yannis Kommana, Alexander Popiak, Thomas Bläsius, and Patrick Baudisch. 2017. TrussFab: Fabricating Sturdy Large-Scale Structures on Desktop 3D Printers. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 2606–2616. https://doi.org/10.1145/3025453.3026016Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Brian Krassenstein. 2014. 3D Printing With Fungus - Artist Creates Chairs and Other Objects Out of Mushrooms - 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing. https://3dprint.com/7279/3d-print-fungus-mycelium/Google ScholarGoogle Scholar
  62. Ashish Kumar, Venkatappa Rao Tumu, Subhendu Ray Chowdhury, and Ramana Reddy Ramana. 2019. A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. International Journal of Biological Macromolecules 121 (1 2019), 588–600. https://doi.org/10.1016/J.IJBIOMAC.2018.10.057Google ScholarGoogle ScholarCross RefCross Ref
  63. FP La Mantia, L Botta, M Morreale, and R Scaffaro. 2012. Effect of small amounts of poly (lactic acid) on the recycling of poly (ethylene terephthalate) bottles. Polymer Degradation and Stability 97, 1 (2012), 21–24.Google ScholarGoogle Scholar
  64. Eldy S. Lazaro Vasquez, Netta Ofer, Shanel Wu, Mary Etta West, Mirela Alistar, and Laura Devendorf. 2022. Exploring Biofoam as a Material for Tangible Interaction. In Designing Interactive Systems Conference (New York, NY, USA, 2022-06-13) (DIS ’22). Association for Computing Machinery, 1525–1539. https://doi.org/10.1145/3532106.3533494Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Eldy S. Lazaro Vasquez and Katia Vega. 2019. From plastic to biomaterials: Prototyping DIY electronics with mycelium. In UbiComp/ISWC 2019- - Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers. Association for Computing Machinery, Inc, New York, NY, USA, 308–311. https://doi.org/10.1145/3341162.3343808Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Eldy S. Lazaro Vasquez and Katia Vega. 2019. Myco-accessories: Sustainable wearables with biodegradable materials. In Proceedings - International Symposium on Wearable Computers, ISWC. Association for Computing Machinery, New York, NY, USA, 306–311. https://doi.org/10.1145/3341163.3346938Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Eldy S. Lazaro Vasquez, Hao-Chuan Wang, and Katia Vega. 2020. Introducing the Sustainable Prototyping Life Cycle for Digital Fabrication to Designers. Association for Computing Machinery, New York, NY, USA, 1301–1312.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Szu-Yu (Cyn) Liu, Jeffrey Bardzell, and Shaowen Bardzell. 2019. Decomposition as Design: Co-Creating (with) Natureculture. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction (New York, NY, USA, 2019-03-17) (TEI ’19). Association for Computing Machinery, 605–614. https://doi.org/10.1145/3294109.3295653Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Modernist Pantry LLC.2022. Carboxymethyl Cellulose (CMC). https://modernistpantry.com/products/carboxymethyl-cellulose-cmc.htmlGoogle ScholarGoogle Scholar
  70. Modernist Pantry LLC.2022. Xanthan Gum. https://modernistpantry.com/products/xanthan-gum.htmlGoogle ScholarGoogle Scholar
  71. Ernerst E. Lockhart. 1969. The soluble solids in beverage coffee as an index to cup quality.Google ScholarGoogle Scholar
  72. Yanchun Luo, Zhiming Ji, Ming C Leu, and Reggie Caudill. 1999. Environmental performance analysis of solid freedom fabrication processes. In Proceedings of the 1999 IEEE international symposium on electronics and the environment (Cat. No. 99CH36357). IEEE, 1–6.Google ScholarGoogle Scholar
  73. Evan Malone and Hod Lipson. 2007. Fab@ Home: the personal desktop fabricator kit. Rapid Prototyping Journal (2007).Google ScholarGoogle Scholar
  74. Jennifer C. Mankoff, Eli Blevis, Alan Borning, Batya Friedman, Susan R. Fussell, Jay Hasbrouck, Allison Woodruff, and Phoebe Sengers. 2007. Environmental Sustainability and Interaction. In CHI ’07 Extended Abstracts on Human Factors in Computing Systems (San Jose, CA, USA) (CHI EA ’07). Association for Computing Machinery, New York, NY, USA, 2121–2124. https://doi.org/10.1145/1240866.1240963Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Materiom. 2022. Materiom : Home. https://materiom.org/Google ScholarGoogle Scholar
  76. William McDonough and Michael Braungart. 2010. Cradle to cradle: Remaking the way we make things. North point press.Google ScholarGoogle Scholar
  77. Yogesh Kumar Meena, Xing-Dong Yang, Markus Löchtefeld, Matt Carnie, Niels Henze, Steve Hodges, Matt Jones, Nivedita Arora, and Gregory D. Abowd. 2020. SelfSustainableCHI: Self-Powered Sustainable Interfaces and Interactions. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3334480.3375167Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Jan Mewis and Norman J. Wagner. 2009. Thixotropy. 147-148 (2009), 214–227. https://doi.org/10.1016/j.cis.2008.09.005Google ScholarGoogle ScholarCross RefCross Ref
  79. Francesco F. Montesano, Angelo Parente, Pietro Santamaria, Alessandro Sannino, and Francesco Serio. 2015. Biodegradable Superabsorbent Hydrogel Increases Water Retention Properties of Growing Media and Plant Growth. Agriculture and Agricultural Science Procedia 4 (1 2015), 451–458. https://doi.org/10.1016/J.AASPRO.2015.03.052 CMC increases water retention and promotes plant growth.Google ScholarGoogle ScholarCross RefCross Ref
  80. Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D printed previews for fast prototyping. In Proceedings of the 27th annual ACM Symposium on User Interface Software & Technology(UIST ’14). ACM, Association for Computing Machinery, 273–280.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baudisch. 2014. FaBrickation: Fast 3D Printing of Functional Objects by Integrating Construction Kit Building Blocks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA, 3827–3834. https://doi.org/10.1145/2556288.2557005Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Tuan D Ngo, Alireza Kashani, Gabriele Imbalzano, Kate TQ Nguyen, and David Hui. 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 143 (2018), 172–196.Google ScholarGoogle ScholarCross RefCross Ref
  83. Martin Nisser, Junyi Zhu, Tianye Chen, Katarina Bulovic, Parinya Punpongsanon, and Stefanie Mueller. 2019. Sequential Support: 3D Printing Dissolvable Support Material for Time-Dependent Mechanisms. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction (New York, NY, USA, 2019-03-17) (TEI ’19). Association for Computing Machinery, 669–676. https://doi.org/10.1145/3294109.3295630Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. International Coffee Organization. 2021. Coffee Market Report (July 2021). https://www.ico.org/documents/cy2020-21/cmr-0721-e.pdfGoogle ScholarGoogle Scholar
  85. Ana Otero. 2022. Materiom : Eggshell paste for 3d printing. https://materiom.org/recipe/601Google ScholarGoogle Scholar
  86. Jukka Pakkanen, Diego Manfredi, Paolo Minetola, and Luca Iuliano. 2017. About the use of recycled or biodegradable filaments for sustainability of 3D printing. In International Conference on Sustainable Design and Manufacturing. Springer, 776–785.Google ScholarGoogle ScholarCross RefCross Ref
  87. James Pierce, Diane J. Schiano, and Eric Paulos. 2010. Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption. Association for Computing Machinery, New York, NY, USA, 1985–1994.Google ScholarGoogle Scholar
  88. Piyush, Raman Kumar, and Ranvijay Kumar. 2020. 3D printing of food materials: A state of art review and future applications. Materials Today: Proceedings 33 (1 2020), 1463–1467. https://doi.org/10.1016/J.MATPR.2020.02.005Google ScholarGoogle ScholarCross RefCross Ref
  89. Prusament. 2018. Spool detail page | Prusament. https://prusament.com/spool/Google ScholarGoogle Scholar
  90. PubChem. 2022. Sodium silicate. https://pubchem.ncbi.nlm.nih.gov/compound/23266Google ScholarGoogle Scholar
  91. Kira Pusch, Thomas J. Hinton, and Adam W. Feinberg. 2018. Large volume syringe pump extruder for desktop 3D printers. HardwareX 3 (2018), 49 – 61. https://doi.org/10.1016/j.ohx.2018.02.001Google ScholarGoogle ScholarCross RefCross Ref
  92. Isabel P. S. Qamar, Rainer Groh, David Holman, and Anne Roudaut. 2018. HCI Meets Material Science: A Literature Review of Morphing Materials for the Design of Shape-Changing Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–23. https://doi.org/10.1145/3173574.3173948Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Ronald Rael and Virginia San Fratello. 2018. Printing Architecture: Innovative Recipes for 3D Printingtle. Princeton Architectural Press. 179 pages.Google ScholarGoogle Scholar
  94. Prusa Research. 2023. Original Prusa i3 MK3S+. https://www.prusa3d.com/category/original-prusa-i3-mk3s/Google ScholarGoogle Scholar
  95. Prusa Research. 2023. Prusament PLA Galaxy Silver 1kg. https://www.prusa3d.com/product/prusament-pla-galaxy-silver-1kg/Google ScholarGoogle Scholar
  96. Michael L Rivera. 2021. Digital Fabrication Techniques for 3D Printing with Everyday Materials. Ph. D. Dissertation. Carnegie Mellon University.Google ScholarGoogle Scholar
  97. Michael L. Rivera, Jack Forman, Scott E. Hudson, and Lining Yao. 2020. Hydrogel-Textile Composites: Actuators for Shape-Changing Interfaces. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems Extended Abstracts (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3334480.3382788Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. David Roedl, Shaowen Bardzell, and Jeffrey Bardzell. 2015. Sustainable Making? Balancing Optimism and Criticism in HCI Discourse. ACM Trans. Comput.-Hum. Interact. 22, 3, Article 15 (06 2015), 27 pages. https://doi.org/10.1145/2699742Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Orlando J Rojas. 2016. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Vol. 271. Springer.Google ScholarGoogle Scholar
  100. Domenico Ronga, Catello Pane, Massimo Zaccardelli, and Nicola Pecchioni. 2016. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Communications in Soil Science and Plant Analysis 47 (2 2016), 356–368. Issue 3. https://doi.org/10.1080/00103624.2015.1122803 SCG compost works well as an alternative for basil and tomato plants.Google ScholarGoogle ScholarCross RefCross Ref
  101. Elizabeth Royte. 2006. Corn plastic to the rescue. Smithsonian Magazine 37, 5 (2006), 84–88.Google ScholarGoogle Scholar
  102. Mohammad Saberian, Jie Li, Anita Donnoli, Ethan Bonderenko, Paolo Oliva, Bailey Gill, Simon Lockrey, and Rafat Siddique. 2021. Recycling of spent coffee grounds in construction materials: A review. Journal of Cleaner Production 289 (3 2021), 125837. https://doi.org/10.1016/J.JCLEPRO.2021.125837Google ScholarGoogle ScholarCross RefCross Ref
  103. John Sargent Jr and R.X. Schwartz. 2019. 3D Printing: Overview, Impacts, and the Federal Role. CRS Report R45852, Version 15. Updated.Congressional Research Service (2 08 2019). https://crsreports.congress.gov/product/pdf/R/R45852Google ScholarGoogle Scholar
  104. Marita Sauerwein. 2022. Materiom : Reprintable Mussel shell | alginate MS02. https://materiom.org/recipe/599Google ScholarGoogle Scholar
  105. M. Sauerwein and E. L. Doubrovski. 2018. Local and recyclable materials for additive manufacturing: 3D printing with mussel shells. Materials Today Communications 15 (6 2018), 214–217. https://doi.org/10.1016/J.MTCOMM.2018.02.028Google ScholarGoogle ScholarCross RefCross Ref
  106. Marita Sauerwein, Zjenja Doubrovski, and Joost Vette. 2022. Materiom : Mussel shell - sucrose composite. https://materiom.org/recipe/23Google ScholarGoogle Scholar
  107. Marita Sauerwein, Zjenja Doubrovski, and Joost Vette. 2022. Materiom : Mussel shell | alginate MS01. https://materiom.org/recipe/25Google ScholarGoogle Scholar
  108. Marita Sauerwein, Jure Zlopasa, Zjenja Doubrovski, Conny Bakker, and Ruud Balkenende. 2020. Reprintable Paste-Based Materials for Additive Manufacturing in a Circular Economy. Sustainability 2020, Vol. 12, Page 8032 12 (9 2020), 8032. Issue 19. https://doi.org/10.3390/SU12198032Google ScholarGoogle ScholarCross RefCross Ref
  109. Martin Schmitz, Mohammadreza Khalilbeigi, Matthias Balwierz, Roman Lissermann, Max Mühlhäuser, and Jürgen Steimle. 2015. Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (New York, NY, USA, 2015-11-05) (UIST ’15). Association for Computing Machinery, 253–258. https://doi.org/10.1145/2807442.2807503Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Jennifer J Shen. 2011. Comparative life cycle assessment of polylactic acid (PLA) and polyethylene terephthalate (PET). Comparative Assessment of PLA and PET (2011).Google ScholarGoogle Scholar
  111. Simplify3D. 2022. Ultimate 3D Printing Material Properties Table. https://www.simplify3d.com/support/materials-guide/properties-table/Google ScholarGoogle Scholar
  112. Michael Sivetz and Norman W. Desrosier. 1979. Coffee technology. (1979).Google ScholarGoogle Scholar
  113. Katherine W Song and Eric Paulos. 2021. Unmaking: Enabling and Celebrating the Creative Material of Failure, Destruction, Decay, and Deformation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 429, 12 pages. https://doi.org/10.1145/3411764.3445529Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Ruoyu Song, Cassandra Telenko, and GW WOODRUFF. 2016. Material waste of commercial FDM printers under realstic conditions. In Solid Freeform Fabrication 2016: Proceedings of the 26th Annual International Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference. 1217–1229.Google ScholarGoogle Scholar
  115. Nathan Stegall. 2006. Designing for Sustainability: A Philosophy for Ecologically Intentional Design. Design Issues 22, 2 (2006), 56–63. https://www.jstor.org/stable/25224047 Publisher: The MIT Press.Google ScholarGoogle Scholar
  116. StoneFlower. 2022. StoneFlower 3D Clay Printing. https://www.stoneflower3d.com/Google ScholarGoogle Scholar
  117. Yongkun Sui, Madhur Atreya, Subash Dahal, Anupam Gopalakrishnan, Rajiv Khosla, and Gregory L Whiting. 2021. Controlled biodegradation of an additively fabricated capacitive soil moisture sensor. ACS Sustainable Chemistry & Engineering 9, 6 (2021), 2486–2495.Google ScholarGoogle ScholarCross RefCross Ref
  118. Hiroko Tabuchi. 2020. Cardboard Box Composting. https://docs.google.com/document/d/1DpkZ6a8rpuWYRgtKbHZ19ijzz078F6QGOHw2-8SQjpg/mobilebasicGoogle ScholarGoogle Scholar
  119. Hiroko Tabuchi. 2020. The Compost by My Couch: How (and Why) I Started an Odorless Bin at Home - The New York Times. https://www.nytimes.com/2020/05/06/climate/new-york-coronavirus-composting.htmlGoogle ScholarGoogle Scholar
  120. Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Stefan Neubert, and Patrick Baudisch. 2015. Patching physical objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Daegu, Kyungpook, Republic of Korea) (UIST ’15). ACM, New York, NY, USA, 83–91. https://doi.org/10.1145/2807442.2807467Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Thermo Fisher Scientific. 2022. Process 11 Parallel Twin-Screw Extruder. https://www.thermofisher.com/order/catalog/product/567-7600Google ScholarGoogle Scholar
  122. Nancy M. Trautmann and Marianne E. Krasny. 1998. Composting in the classroom: Scientific inquiry for high school students. Kendall/Hunt Publishing Company. https://ecommons.cornell.edu/bitstream/handle/1813/3338/?sequence=1Google ScholarGoogle Scholar
  123. OLEM US EPA. 2015. Sustainable Materials Management Basics. https://www.epa.gov/smm/sustainable-materials-management-basicsGoogle ScholarGoogle Scholar
  124. Eldy S Lazaro Vasquez, Hao-Chuan Wang, and Katia Vega. 2020. The Environmental Impact of Physical Prototyping: a Five-Year CHI Review. SelfSustainableCHI 2020 (2020).Google ScholarGoogle Scholar
  125. Jon Vogler, Peter Sarjeant, Philip Barr, IB Sanborn, Robert Brooks, and William Burger. 1986. Understanding Paper Recycling. Volunteers in Technical Assistance (VITA).Google ScholarGoogle Scholar
  126. Ludwig Wilhelm Wall, Alec Jacobson, Daniel Vogel, and Oliver Schneider. 2021. Scrappy: Using Scrap Material as Infill to Make Fabrication More Sustainable. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, Article 665, 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Guanyun Wang, Humphrey Yang, Zeyu Yan, Nurcan Gecer Ulu, Ye Tao, Jianzhe Gu, Levent Burak Kara, and Lining Yao. 2018. 4DMesh: 4D Printing Morphing Non-Developable Mesh Surfaces. In The 31st Annual ACM Symposium on User Interface Software and Technology. ACM, 623–635.Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Jilong Wang, Yan Liu, Xintian Zhang, Syed Ehsanur Rahman, Siheng Su, Junhua Wei, Fuda Ning, Zhonglue Hu, Raul Martínez-Zaguilán, Souad R. Sennoune, Weilong Cong, Gordon Christopher, Kun Zhang, and Jingjing Qiu. 2021. 3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. 214 (2021), 123238. https://doi.org/10.1016/j.polymer.2020.123238Google ScholarGoogle ScholarCross RefCross Ref
  129. Ya Nan Wang, Yun Xuan Weng, and Lei Wang. 2014. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polymer Testing 36 (6 2014), 119–125. https://doi.org/10.1016/J.POLYMERTESTING.2014.04.001Google ScholarGoogle ScholarCross RefCross Ref
  130. Kelly Widdicks, Mike Hazas, Oliver Bates, and Adrian Friday. 2019. Streaming, Multi-Screens and YouTube: The New (Unsustainable) Ways of Watching in the Home. Association for Computing Machinery, New York, NY, USA, 1–13.Google ScholarGoogle Scholar
  131. Kelly Widdicks and Daniel Pargman. 2019. Breaking the Cornucopian Paradigm: Towards Moderate Internet Use in Everyday Life. In Proceedings of the Fifth Workshop on Computing within Limits (Lappeenranta, Finland) (LIMITS ’19). Association for Computing Machinery, New York, NY, USA, Article 2, 8 pages. https://doi.org/10.1145/3338103.3338105Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Terry Wohlers and Tim Gornet. 2018. History of additive manufacturing. Wohlers report 2018: 3D printing and additive manufacturing state of the industry: annual worldwide progress report. (2018).Google ScholarGoogle Scholar
  133. Sang Min Won, Jahyun Koo, Kaitlyn E Crawford, Aaron D Mickle, Yeguang Xue, Seunghwan Min, Lisa A McIlvried, Ying Yan, Sung Bong Kim, Seung Min Lee, 2018. Natural wax for transient electronics. Advanced Functional Materials 28, 32 (2018), 1801819.Google ScholarGoogle ScholarCross RefCross Ref
  134. Jun Wu and Raymond J. Zeng. 2017. Biomimetic Regulation of Microbially Induced Calcium Carbonate Precipitation Involving Immobilization of Sporasarcina pasteurii by Sodium Alginate. 17, 4 (2017), 1854–1862. https://doi.org/10.1021/acs.cgd.6b01813Google ScholarGoogle ScholarCross RefCross Ref
  135. Shanel Wu and Laura Devendorf. 2020. Unfabricate: Designing Smart Textiles for Disassembly. Association for Computing Machinery, New York, NY, USA, 1–14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Xianglian Xiao, Venkata S. Chevali, Pingan Song, Dongning He, and Hao Wang. 2019. Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock. Composites Science and Technology 184 (11 2019), 107887. https://doi.org/10.1016/J.COMPSCITECH.2019.107887Google ScholarGoogle ScholarCross RefCross Ref
  137. Jian Yang, Xingye An, Liqin Liu, Shiyu Tang, Haibing Cao, Qingliang Xu, and Hongbin Liu. 2020. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydrate Polymers 250 (12 2020), 116881. https://doi.org/10.1016/J.CARBPOL.2020.116881Google ScholarGoogle ScholarCross RefCross Ref
  138. Clement Zheng, Jeeeun Kim, Daniel Leithinger, Mark D. Gross, and Ellen Yi-Luen Do. 2019. Mechamagnets: Designing and Fabricating Haptic and Functional Physical Inputs with Embedded Magnets. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction (New York, NY, USA, 2019-03-17) (TEI ’19). Association for Computing Machinery, 325–334. https://doi.org/10.1145/3294109.3295622Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Mohsen Ziaee and Nathan B. Crane. 2019. Binder jetting: A review of process, materials, and methods. Additive Manufacturing 28 (8 2019), 781–801. https://doi.org/10.1016/J.ADDMA.2019.05.031Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Designing a Sustainable Material for 3D Printing with Spent Coffee Grounds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format