ABSTRACT
The fitting problem for conjunctive queries (CQs) is the problem to construct a CQ that fits a given set of labeled data examples. When a fitting CQ exists, it is in general not unique. This leads us to proposing natural refinements of the notion of a fitting CQ, such as most-general fitting CQ, most-specific fitting CQ, and unique fitting CQ. We give structural characterizations of these notions in terms of (suitable refinements of) homomorphism dualities, frontiers, and direct products, which enable the construction of the refined fitting CQs when they exist. We also pinpoint the complexity of the associated existence and verification problems, and determine the size of fitting CQs. We study the same problems for UCQs and for the more restricted class of tree CQs.
- Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. 2011a. Characterizing Schema Mappings via Data Examples. ACM Trans. Database Syst. , Vol. 36, 4 (2011), 23:1--23:48. https://doi.org/10.1145/2043652.2043656Google Scholar
Digital Library
- Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. 2011b. Designing and Refining Schema Mappings via Data Examples. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (Athens, Greece) (SIGMOD '11). Association for Computing Machinery, New York, NY, USA, 133--144. https://doi.org/10.1145/1989323.1989338Google Scholar
Digital Library
- Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. 2016. Reverse Engineering SPARQL Queries. In Proceedings of the 25th International Conference on World Wide Web (Montréal, Québec, Canada) (WWW '16). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 239--249. https://doi.org/10.1145/2872427.2882989Google Scholar
Digital Library
- Pablo Barceló and Miguel Romero. 2017. The Complexity of Reverse Engineering Problems for Conjunctive Queries. In 20th International Conference on Database Theory, ICDT 2017, March 21--24, 2017, Venice, Italy (LIPIcs, Vol. 68), , Michael Benedikt and Giorgio Orsi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 7:1--7:17. https://doi.org/10.4230/LIPIcs.ICDT.2017.7Google Scholar
- Pablo Barceló, Alexander Baumgartner, Victor Dalmau, and Benny Kimelfeld. 2021. Regularizing conjunctive features for classification. J. Comput. System Sci. , Vol. 119 (2021), 97--124. https://doi.org/10.1016/j.jcss.2021.01.003Google Scholar
Cross Ref
- Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. 2014. Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst. , Vol. 39, 4 (2014), 33:1--33:44. https://doi.org/10.1145/2661643Google Scholar
Digital Library
- Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. 2015. Learning Path Queries on Graph Databases. In EDBT. 109--120. https://doi.org/10.5441/002/edbt.2015.11Google Scholar
- Raimundo Briceño, Andrei Bulatov, Víctor Dalmau, and Benoît Larose. 2021. Dismantlability, connectedness, and mixing in relational structures. J. of Comb. Theory, Ser. B , Vol. 147 (2021), 37--70. https://doi.org/10.1016/j.jctb.2020.10.001Google Scholar
- Lorenz Bü hmann, Jens Lehmann, and Patrick Westphal. 2016. DL-Learner - A framework for inductive learning on the Semantic Web. J. Web Semant. , Vol. 39 (2016), 15--24. https://doi.org/10.1016/j.websem.2016.06.001Google Scholar
Digital Library
- Balder ten Cate and V'i ctor Dalmau. 2015. The Product Homomorphism Problem and Applications. In 18th International Conference on Database Theory, ICDT 2015, March 23--27, 2015, Brussels, Belgium (LIPIcs, Vol. 31), , Marcelo Arenas and Mart'i n Ugarte (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 161--176. https://doi.org/10.4230/LIPIcs.ICDT.2015.161Google Scholar
- Balder ten Cate and Victor Dalmau. 2022. Conjunctive Queries: Unique Characterizations and Exact Learnability. ACM Trans. Database Syst. , Vol. 47, 4 (2022), 14:1--14:41. https://doi.org/10.1145/3559756Google Scholar
Digital Library
- Balder ten Cate, Victor Dalmau, Maurice Funk, and Carsten Lutz. 2022a. Extremal Fitting Problems for Conjunctive Queries. https://doi.org/10.48550/arXiv.2206.05080 arxiv: 2206.05080 [cs.DB]Google Scholar
- Balder ten Cate, V'i ctor Dalmau, and Phokion G. Kolaitis. 2013. Learning schema mappings. ACM Trans. Database Syst. , Vol. 38, 4 (2013), 28:1--28:31. https://doi.org/10.1145/2539032.2539035Google Scholar
Digital Library
- Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten Lutz. 2022b. On the non-efficient PAC learnability of acyclic conjunctive queries. https://doi.org/10.48550/arXiv.2208.10255 arxiv: 2208.10255 [cs.DB]Google Scholar
- Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten Lutz. 2023. SAT-Based PAC Learning of Description Logic Concepts. Forthcoming.Google Scholar
- Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. 2017. Approximation Algorithms for Schema-Mapping Discovery from Data Examples. ACM Trans. Database Syst. , Vol. 42, 2 (2017), 12:1--12:41. https://doi.org/10.1145/3044712Google Scholar
Digital Library
- Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Relational Data Bases. In ACM Symposium on Theory of Computing (STOC). 77--90.Google Scholar
- Sara Cohen and Yaacov Y. Weiss. 2016. The Complexity of Learning Tree Patterns from Example Graphs. ACM Trans. Database Syst. , Vol. 41, 2 (2016), 14:1--14:44. https://doi.org/10.1145/2890492Google Scholar
Digital Library
- Andrew Cropper, Sebastijan Dumanvcivc, Richard Evans, and Stephen H. Muggleton. 2022. Inductive logic programming at 30. Mach. Learn. , Vol. 111, 1 (2022), 147--172. https://doi.org/10.1007/s10994-021-06089--1Google Scholar
Cross Ref
- Jan Foniok, Jaroslav Nesetril, and Claude Tardif. 2008. Generalised dualities and maximal finite antichains in the homomorphism order of relational structures. Eur. J. Comb. , Vol. 29, 4 (2008), 881--899. https://doi.org/10.1016/j.ejc.2007.11.017Google Scholar
Digital Library
- Maurice Funk, Jean Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2019. Learning Description Logic Concepts: When can Positive and Negative Examples be Separated?. In Proceedings of IJCAI 2019. 1682--1688. https://doi.org/10.24963/ijcai.2019/233Google Scholar
Cross Ref
- Georg Gottlob, Nicola Leone, and Francesco Scarcello. 1999. On the Complexity of Some Inductive Logic Programming Problems. New Generation Comput. , Vol. 17, 1 (1999), 53--75. https://doi.org/10.1007/BF03037582Google Scholar
Digital Library
- Georg Gottlob and Pierre Senellart. 2010. Schema mapping discovery from data instances. J. ACM , Vol. 57, 2 (2010), 6:1--6:37. https://doi.org/10.1145/1667053.1667055Google Scholar
Digital Library
- David Harel, Orna Kupferman, and Moshe Y. Vardi. 2002. On the Complexity of Verifying Concurrent Transition Systems. Inf. Comput. , Vol. 173, 2 (2002), 143--161. https://doi.org/10.1006/inco.2001.2920Google Scholar
Digital Library
- Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. 1995. Computing Simulations on Finite and Infinite Graphs. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23--25 October 1995. IEEE Computer Society, 453--462. https://doi.org/10.1109/SFCS.1995.492576Google Scholar
- Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2020b. Logical Separability of Incomplete Data under Ontologies. In Proceedings of KR 2020, , D. Calvanese, E. Erdem, and M. Thielscher (Eds.). 517--528. https://doi.org/10.24963/kr.2020/52Google Scholar
Cross Ref
- Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2021. Separating Data Examples by Description Logic Concepts with Restricted Signatures. In Proceedings of KR 2021, , M. Bienvenu, G. Lakemeyer, and E. Erdem (Eds.). 390--399. https://doi.org/10.24963/kr.2021/37Google Scholar
Cross Ref
- Jean Christoph Jung, Carsten Lutz, and Frank Wolter. 2020a. Least General Generalizations in Description Logic: Verification and Existence. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7--12, 2020. 2854--2861. https://doi.org/10.1609/aaai.v34i03.5675Google Scholar
Cross Ref
- Benny Kimelfeld and Christopher Ré. 2018. A Relational Framework for Classifier Engineering. ACM SIGMOD Record , Vol. 47 (2018), 6--13. https://doi.org/10.1145/3277006.3277009Google Scholar
Digital Library
- Benoit Larose, Cynthia Loten, and Claude Tardif. 2007. A Characterisation of First-Order Constraint Satisfaction Problems. Log. Methods Comput. Sci. , Vol. 3, 4 (2007). https://doi.org/10.2168/LMCS-3(4:6)2007Google Scholar
Cross Ref
- Jens Lehmann and Christoph Haase. 2009. Ideal Downward Refinement in the $mathcalEL$ Description Logic. In Inductive Logic Programming, 19th International Conference, ILP 2009, Leuven, Belgium, July 02-04, 2009. Revised Papers (Lecture Notes in Computer Science, Vol. 5989), Luc De Raedt (Ed.). Springer, 73--87. https://doi.org/10.1007/978--3--642--13840--9_8Google Scholar
- Jens Lehmann and Pascal Hitzler. 2010. Concept learning in description logics using refinement operators. Mach. Learn. , Vol. 78, 1--2 (2010), 203--250. https://doi.org/10.1007/s10994-009--5146--2Google Scholar
Cross Ref
- Hao Li, Chee-Yong Chan, and David Maier. 2015. Query from Examples: An Iterative, Data-Driven Approach to Query Construction. Proc. VLDB Endow. , Vol. 8, 13 (2015), 2158--2169. https://doi.org/10.14778/2831360.2831369Google Scholar
Digital Library
- Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill, New York.Google Scholar
Digital Library
- Giuseppe Rizzo, Nicola Fanizzi, and Claudia d'Amato. 2020. Class expression induction as concept space exploration: From DL-FOIL to DL-FOCL. Future Gener. Comput. Syst. , Vol. 108 (2020), 256--272. https://doi.org/10.1016/j.future.2020.02.071Google Scholar
Cross Ref
- Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2014. Query reverse engineering. The VLDB Journal, Vol. 23, 5 (2014), 721--746. https://doi.org/10.1007/s00778-013-0349--3Google Scholar
Cross Ref
- Ross Willard. 2010. Testing Expressibility Is Hard. In Principles and Practice of Constraint Programming - CP 2010 - 16th International Conference, CP 2010, St. Andrews, Scotland, UK, September 6--10, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6308), , David Cohen (Ed.). Springer, 9--23. https://doi.org/10.1007/978--3--642--15396--9_4 ioGoogle Scholar
Index Terms
Extremal Fitting Problems for Conjunctive Queries
Recommendations
Equivalence and minimization of conjunctive queries under combined semantics
ICDT '12: Proceedings of the 15th International Conference on Database TheoryThe problems of query containment, equivalence, and minimization are fundamental problems in the context of query processing and optimization. In their classic work [2] published in 1977, Chandra and Merlin solved the three problems for the language of ...
Parallel-Correctness and Containment for Conjunctive Queries with Union and Negation
Single-round multiway join algorithms first reshuffle data over many servers and then evaluate the query at hand in a parallel and communication-free way. A key question is whether a given distribution policy for the reshuffle is adequate for computing ...
Determinacy and query rewriting for conjunctive queries and views
Answering queries using views is the problem which examines how to derive the answers to a query when we only have the answers to a set of views. Constructing rewritings is a widely studied technique to derive those answers. In this paper we consider ...





Comments