skip to main content
10.1145/3584372.3588655acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article
Open Access

Extremal Fitting Problems for Conjunctive Queries

Published:18 June 2023Publication History

ABSTRACT

The fitting problem for conjunctive queries (CQs) is the problem to construct a CQ that fits a given set of labeled data examples. When a fitting CQ exists, it is in general not unique. This leads us to proposing natural refinements of the notion of a fitting CQ, such as most-general fitting CQ, most-specific fitting CQ, and unique fitting CQ. We give structural characterizations of these notions in terms of (suitable refinements of) homomorphism dualities, frontiers, and direct products, which enable the construction of the refined fitting CQs when they exist. We also pinpoint the complexity of the associated existence and verification problems, and determine the size of fitting CQs. We study the same problems for UCQs and for the more restricted class of tree CQs.

References

  1. Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. 2011a. Characterizing Schema Mappings via Data Examples. ACM Trans. Database Syst. , Vol. 36, 4 (2011), 23:1--23:48. https://doi.org/10.1145/2043652.2043656Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. 2011b. Designing and Refining Schema Mappings via Data Examples. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (Athens, Greece) (SIGMOD '11). Association for Computing Machinery, New York, NY, USA, 133--144. https://doi.org/10.1145/1989323.1989338Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. 2016. Reverse Engineering SPARQL Queries. In Proceedings of the 25th International Conference on World Wide Web (Montréal, Québec, Canada) (WWW '16). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 239--249. https://doi.org/10.1145/2872427.2882989Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Pablo Barceló and Miguel Romero. 2017. The Complexity of Reverse Engineering Problems for Conjunctive Queries. In 20th International Conference on Database Theory, ICDT 2017, March 21--24, 2017, Venice, Italy (LIPIcs, Vol. 68), , Michael Benedikt and Giorgio Orsi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 7:1--7:17. https://doi.org/10.4230/LIPIcs.ICDT.2017.7Google ScholarGoogle Scholar
  5. Pablo Barceló, Alexander Baumgartner, Victor Dalmau, and Benny Kimelfeld. 2021. Regularizing conjunctive features for classification. J. Comput. System Sci. , Vol. 119 (2021), 97--124. https://doi.org/10.1016/j.jcss.2021.01.003Google ScholarGoogle ScholarCross RefCross Ref
  6. Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. 2014. Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst. , Vol. 39, 4 (2014), 33:1--33:44. https://doi.org/10.1145/2661643Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. 2015. Learning Path Queries on Graph Databases. In EDBT. 109--120. https://doi.org/10.5441/002/edbt.2015.11Google ScholarGoogle Scholar
  8. Raimundo Briceño, Andrei Bulatov, Víctor Dalmau, and Benoît Larose. 2021. Dismantlability, connectedness, and mixing in relational structures. J. of Comb. Theory, Ser. B , Vol. 147 (2021), 37--70. https://doi.org/10.1016/j.jctb.2020.10.001Google ScholarGoogle Scholar
  9. Lorenz Bü hmann, Jens Lehmann, and Patrick Westphal. 2016. DL-Learner - A framework for inductive learning on the Semantic Web. J. Web Semant. , Vol. 39 (2016), 15--24. https://doi.org/10.1016/j.websem.2016.06.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Balder ten Cate and V'i ctor Dalmau. 2015. The Product Homomorphism Problem and Applications. In 18th International Conference on Database Theory, ICDT 2015, March 23--27, 2015, Brussels, Belgium (LIPIcs, Vol. 31), , Marcelo Arenas and Mart'i n Ugarte (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 161--176. https://doi.org/10.4230/LIPIcs.ICDT.2015.161Google ScholarGoogle Scholar
  11. Balder ten Cate and Victor Dalmau. 2022. Conjunctive Queries: Unique Characterizations and Exact Learnability. ACM Trans. Database Syst. , Vol. 47, 4 (2022), 14:1--14:41. https://doi.org/10.1145/3559756Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Balder ten Cate, Victor Dalmau, Maurice Funk, and Carsten Lutz. 2022a. Extremal Fitting Problems for Conjunctive Queries. https://doi.org/10.48550/arXiv.2206.05080 arxiv: 2206.05080 [cs.DB]Google ScholarGoogle Scholar
  13. Balder ten Cate, V'i ctor Dalmau, and Phokion G. Kolaitis. 2013. Learning schema mappings. ACM Trans. Database Syst. , Vol. 38, 4 (2013), 28:1--28:31. https://doi.org/10.1145/2539032.2539035Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten Lutz. 2022b. On the non-efficient PAC learnability of acyclic conjunctive queries. https://doi.org/10.48550/arXiv.2208.10255 arxiv: 2208.10255 [cs.DB]Google ScholarGoogle Scholar
  15. Balder ten Cate, Maurice Funk, Jean Christoph Jung, and Carsten Lutz. 2023. SAT-Based PAC Learning of Description Logic Concepts. Forthcoming.Google ScholarGoogle Scholar
  16. Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. 2017. Approximation Algorithms for Schema-Mapping Discovery from Data Examples. ACM Trans. Database Syst. , Vol. 42, 2 (2017), 12:1--12:41. https://doi.org/10.1145/3044712Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Relational Data Bases. In ACM Symposium on Theory of Computing (STOC). 77--90.Google ScholarGoogle Scholar
  18. Sara Cohen and Yaacov Y. Weiss. 2016. The Complexity of Learning Tree Patterns from Example Graphs. ACM Trans. Database Syst. , Vol. 41, 2 (2016), 14:1--14:44. https://doi.org/10.1145/2890492Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Andrew Cropper, Sebastijan Dumanvcivc, Richard Evans, and Stephen H. Muggleton. 2022. Inductive logic programming at 30. Mach. Learn. , Vol. 111, 1 (2022), 147--172. https://doi.org/10.1007/s10994-021-06089--1Google ScholarGoogle ScholarCross RefCross Ref
  20. Jan Foniok, Jaroslav Nesetril, and Claude Tardif. 2008. Generalised dualities and maximal finite antichains in the homomorphism order of relational structures. Eur. J. Comb. , Vol. 29, 4 (2008), 881--899. https://doi.org/10.1016/j.ejc.2007.11.017Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Maurice Funk, Jean Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2019. Learning Description Logic Concepts: When can Positive and Negative Examples be Separated?. In Proceedings of IJCAI 2019. 1682--1688. https://doi.org/10.24963/ijcai.2019/233Google ScholarGoogle ScholarCross RefCross Ref
  22. Georg Gottlob, Nicola Leone, and Francesco Scarcello. 1999. On the Complexity of Some Inductive Logic Programming Problems. New Generation Comput. , Vol. 17, 1 (1999), 53--75. https://doi.org/10.1007/BF03037582Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Georg Gottlob and Pierre Senellart. 2010. Schema mapping discovery from data instances. J. ACM , Vol. 57, 2 (2010), 6:1--6:37. https://doi.org/10.1145/1667053.1667055Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. David Harel, Orna Kupferman, and Moshe Y. Vardi. 2002. On the Complexity of Verifying Concurrent Transition Systems. Inf. Comput. , Vol. 173, 2 (2002), 143--161. https://doi.org/10.1006/inco.2001.2920Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. 1995. Computing Simulations on Finite and Infinite Graphs. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23--25 October 1995. IEEE Computer Society, 453--462. https://doi.org/10.1109/SFCS.1995.492576Google ScholarGoogle Scholar
  26. Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2020b. Logical Separability of Incomplete Data under Ontologies. In Proceedings of KR 2020, , D. Calvanese, E. Erdem, and M. Thielscher (Eds.). 517--528. https://doi.org/10.24963/kr.2020/52Google ScholarGoogle ScholarCross RefCross Ref
  27. Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2021. Separating Data Examples by Description Logic Concepts with Restricted Signatures. In Proceedings of KR 2021, , M. Bienvenu, G. Lakemeyer, and E. Erdem (Eds.). 390--399. https://doi.org/10.24963/kr.2021/37Google ScholarGoogle ScholarCross RefCross Ref
  28. Jean Christoph Jung, Carsten Lutz, and Frank Wolter. 2020a. Least General Generalizations in Description Logic: Verification and Existence. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7--12, 2020. 2854--2861. https://doi.org/10.1609/aaai.v34i03.5675Google ScholarGoogle ScholarCross RefCross Ref
  29. Benny Kimelfeld and Christopher Ré. 2018. A Relational Framework for Classifier Engineering. ACM SIGMOD Record , Vol. 47 (2018), 6--13. https://doi.org/10.1145/3277006.3277009Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Benoit Larose, Cynthia Loten, and Claude Tardif. 2007. A Characterisation of First-Order Constraint Satisfaction Problems. Log. Methods Comput. Sci. , Vol. 3, 4 (2007). https://doi.org/10.2168/LMCS-3(4:6)2007Google ScholarGoogle ScholarCross RefCross Ref
  31. Jens Lehmann and Christoph Haase. 2009. Ideal Downward Refinement in the $mathcalEL$ Description Logic. In Inductive Logic Programming, 19th International Conference, ILP 2009, Leuven, Belgium, July 02-04, 2009. Revised Papers (Lecture Notes in Computer Science, Vol. 5989), Luc De Raedt (Ed.). Springer, 73--87. https://doi.org/10.1007/978--3--642--13840--9_8Google ScholarGoogle Scholar
  32. Jens Lehmann and Pascal Hitzler. 2010. Concept learning in description logics using refinement operators. Mach. Learn. , Vol. 78, 1--2 (2010), 203--250. https://doi.org/10.1007/s10994-009--5146--2Google ScholarGoogle ScholarCross RefCross Ref
  33. Hao Li, Chee-Yong Chan, and David Maier. 2015. Query from Examples: An Iterative, Data-Driven Approach to Query Construction. Proc. VLDB Endow. , Vol. 8, 13 (2015), 2158--2169. https://doi.org/10.14778/2831360.2831369Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill, New York.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Giuseppe Rizzo, Nicola Fanizzi, and Claudia d'Amato. 2020. Class expression induction as concept space exploration: From DL-FOIL to DL-FOCL. Future Gener. Comput. Syst. , Vol. 108 (2020), 256--272. https://doi.org/10.1016/j.future.2020.02.071Google ScholarGoogle ScholarCross RefCross Ref
  36. Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2014. Query reverse engineering. The VLDB Journal, Vol. 23, 5 (2014), 721--746. https://doi.org/10.1007/s00778-013-0349--3Google ScholarGoogle ScholarCross RefCross Ref
  37. Ross Willard. 2010. Testing Expressibility Is Hard. In Principles and Practice of Constraint Programming - CP 2010 - 16th International Conference, CP 2010, St. Andrews, Scotland, UK, September 6--10, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6308), , David Cohen (Ed.). Springer, 9--23. https://doi.org/10.1007/978--3--642--15396--9_4 ioGoogle ScholarGoogle Scholar

Index Terms

  1. Extremal Fitting Problems for Conjunctive Queries

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        PODS '23: Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
        June 2023
        392 pages
        ISBN:9798400701276
        DOI:10.1145/3584372

        Copyright © 2023 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 June 2023

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate476of1,835submissions,26%
      • Article Metrics

        • Downloads (Last 12 months)100
        • Downloads (Last 6 weeks)28

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader