skip to main content
10.1145/3587135.3592172acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
invited-talk

Tunable and Portable Extreme-Scale Drug Discovery Platform at Exascale: the LIGATE Approach

Published: 04 August 2023 Publication History

Abstract

Today digital revolution is having a dramatic impact on the pharmaceutical industry and the entire healthcare system. The implementation of machine learning, extreme-scale computer simulations, and big data analytics in the drug design and development process offers an excellent opportunity to lower the risk of investment and reduce the time to the patient.
Within the LIGATE project 1, we aim to integrate, extend, and co-design best-in-class European components to design Computer-Aided Drug Design (CADD) solutions exploiting today's high-end supercomputers and tomorrow's Exascale resources, fostering European competitiveness in the field.
The proposed LIGATE solution is a fully integrated workflow that enables to deliver the result of a virtual screening campaign for drug discovery with the highest speed along with the highest accuracy. The full automation of the solution and the possibility to run it on multiple supercomputing centers at once permit to run an extreme scale in silico drug discovery campaign in few days to respond promptly for example to a worldwide pandemic crisis.

References

[1]
Marcello Allegretti, Maria Candida Cesta, Mara Zippoli, Andrea Beccari, Carmine Talarico, Flavio Mantelli, Enrico M Bucci, Laura Scorzolini, and Emanuele Nicastri. 2022. Repurposing the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection. Cell Death & Differentiation 29, 1 (2022), 156--166.
[2]
Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The Architecture, Current State and Future Direction of HipSYCL. In Proceedings of the International Workshop on OpenCL (IWOCL '20). Association for Computing Machinery, New York, NY, USA, Article 8, 1 pages. https://doi.org/10.1145/3388333.3388658
[3]
Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O'Reilly, and Saman Amarasinghe. 2014. OpenTuner: An Extensible Framework for Program Autotuning. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation Techniques. 303--316.
[4]
Prasanna Balaprakash, Jack Dongarra, Todd Gamblin, Mary Hall, Jeffrey K. Hollingsworth, Boyana Norris, and Richard Vuduc. 2018. Autotuning in High-Performance Computing Applications. Proc. IEEE 106, 11 (2018), 2068--2083.
[5]
Andrea R. Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele Costantino. 2013. LiGen: A High Performance Workflow for Chemistry Driven de Novo Design. Journal of Chemical Information and Modeling 53, 6 (2013), 1518--1527.
[6]
Davide Gadioli, Gianluca Palermo, Stefano Cherubin, Emanuele Vitali, Giovanni Agosta, Candida Manelfi, Andrea R Beccari, Carlo Cavazzoni, Nico Sanna, and Cristina Silvano. 2021. Tunable approximations to control time-to-solution in an HPC molecular docking Mini-App. The Journal of Supercomputing 77, 1 (2021), 841--869.
[7]
Davide Gadioli, Emanuele Vitali, Federico Ficarelli, Chiara Latini, Candida Manelfi, Carmine Talarico, Cristina Silvano, Carlo Cavazzoni, Gianluca Palermo, and Andrea Rosario Beccari. 2023. EXSCALATE: An Extreme-Scale Virtual Screening Platform for Drug Discovery Targeting Polypharmacology to Fight SARS-CoV-2. IEEE Transactions on Emerging Topics in Computing 11, 1 (2023), 170--181. https://doi.org/10.1109/TETC.2022.3187134
[8]
Davide Gadioli, Emanuele Vitali, Gianluca Palermo, and Cristina Silvano. 2019. MARGOt: A dynamic autotuning framework for self-aware approximate computing. IEEE Trans. Comput. 68, 5 (2019), 713--728.
[9]
Silvia Gervasoni, Giulio Vistoli, Carmine Talarico, Candida Manelfi, Andrea R. Beccari, Gabriel Studer, Gerardo Tauriello, Andrew Mark Waterhouse, Torsten Schwede, and Alessandro Pedretti. 2020. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. International Journal of Molecular Sciences 21(14), 5152 (2020). https://doi.org/10.3390/ijms21145152
[10]
Martin Golasowski, Jan Martinovič, Jan Křenek, Kateřina Slaninová, Marc Levrier, Piyush Harsh, Marc Derquennes, Frédéric Donnat, and Olivier Terzo. 2022. The LEXIS Platform for Distributed Workflow Execution and Data Management. 17--35 pages. https://doi.org/10.1201/9781003176664-2
[11]
Khronos SYCL Working Group. 2022. SYCL 2020 Specification, revision 6. Technical Report. Khronos Group.
[12]
Bruno Guindani, Danilo Ardagna, and Alessandra Guglielmi. 2022. MALIBOO: When Machine Learning meets Bayesian Optimization. In IEEE 7th International Conference on Smart Cloud (SmartCloud). IEEE, 1--9.
[13]
Intel [n. d.]. Intel Data-Parallel C++. Intel. https://github.com/intel/llvm/.
[14]
Clemens Isert, Kenneth Atz, and Gisbert Schneider. 2023. Structure-based drug design with geometric deep learning. Current Opinion in Structural Biology 79 (2023), 102548.
[15]
John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596 (2021), 583--589.
[16]
R Kissmann, J Kleimann, B Krebl, and T Wiengarten. 2018. The CRONOS code for astrophysical magnetohydrodynamics. The Astrophysical Journal Supplement Series 236, 2 (2018), 53.
[17]
Zhirui Liao, Ronghui You, Xiaodi Huang, Xiaojun Yao, Tao Huang, and Shanfeng Zhu. 2019. DeepDock: Enhancing Ligand-protein Interaction Prediction by a Combination of Ligand and Structure Information. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 311--317. https://doi.org/10.1109/BIBM47256.2019.8983365
[18]
Magnus Lundborg, Jack Lidmar, and Berk Hess. 2021. The accelerated weight histogram method for alchemical free energy calculations. Journal of Chemical Physics 154 (2021), 204103. https://doi.org/10.1063/5.0044352
[19]
Hans Matter and Christoph Sotriffer. 2011. Applications and Success Stories in Virtual Screening. John Wiley & Sons, Ltd, Chapter 12, 319--358.
[20]
Natarajan Arul Murugan, Artur Podobas, Davide Gadioli, Emanuele Vitali, Gianluca Palermo, and Stefano Markidis. 2022. A Review on Parallel Virtual Screening Softwares for High-Performance Computers. Pharmaceuticals 15, 1 (2022), 63.
[21]
Oscar Méndez-Lucio, Mazen Ahmad, Ehecatl Antonio del Rio-Chanona, and Jörg Kurt Wegner. 2021. A Geometric Deep Learning Approach to Predict Binding Conformations of Bioactive Molecules. ChemRxiv (2021). https://doi.org/10.26434/chemrxiv.14453106.v1
[22]
Philipp Salzmann, Fabian Knorr, Peter Thoman, Philipp Gschwandtner, Biagio Cosenza, and Fahringer Thomas. 2023. An Asynchronous Dataflow-Driven Execution Model For Distributed Accelerator Computing. In 2023 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid) (CCGrid 2023). IEEE, 1--12.
[23]
Chao Shen, Xujun Zhang, Yafeng Deng, Junbo Gao, Dong Wang, Lei Xu, Peichen Pan, Tingjun Hou, and Yu Kang. 2022. Boosting Protein--Ligand Binding Pose Prediction and Virtual Screening Based on Residue--Atom Distance Likelihood Potential and Graph Transformer. Journal of Medicinal Chemistry 65, 15 (08 2022), 10691--10706. https://doi.org/10.1021/acs.jmedchem.2c00991
[24]
Cristina Silvano, Gianluca Palermo, Giovanni Agosta, Amir H. Ashouri, Davide Gadioli, Stefano Cherubin, Emanuele Vitali, Luca Benini, Andrea Bartolini, Daniele Cesarini, Joao Cardoso, Joao Bispo, Pedro Pinto, Riccardo Nobre, Erven Rohou, Loïc Besnard, Imane Lasri, Nico Sanna, Carlo Cavazzoni, Radim Cmar, Jan Martinovič, Kateřina Slaninová, Martin Golasowski, Andrea R. Beccari, and Candida Manelfi. 2018. Autotuning and Adaptivity in Energy Efficient HPC Systems: The ANTAREX Toolbox. In Proceedings of the 15th ACM International Conference on Computing Frontiers (CF '18). 270--275.
[25]
Jeongtae Son and Dongsup Kim. 2021. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLOS ONE 16, 4 (04 2021), 1--13.
[26]
Marta M Stepniewska-Dziubinska, Piotr Zielenkiewicz, and Pawel Siedlecki. 2018. Development and evaluation of a deep learning model for protein--ligand binding affinity prediction. Bioinformatics 34, 21 (05 2018), 3666--3674.
[27]
Minyi Su, Qifan Yang, Yu Du, Guoqin Feng, Zhihai Liu, Yan Li, and Renxiao Wang. 2019. Comparative Assessment of Scoring Functions: The CASF-2016 Update. Journal of Chemical Information and Modeling 59, 2 (02 2019), 895--913.
[28]
Vaclav Svaton, Jan Martinovic, Jan Krenek, Thomas Esch, and Pavel Tomancak. 2020. HPC-as-a-Service via HEAppE Platform. Advances in Intelligent Systems and Computing 993 (2020), 280--293. https://doi.org/10.1007/978-3-030-22354-0_26
[29]
Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer. 2019. Celerity: High-level c++ for accelerator clusters. In Euro-Par 2019: Parallel Processing: 25th International Conference on Parallel and Distributed Computing, Göttingen, Germany, August 26--30, 2019, Proceedings 25. Springer, 291--303.
[30]
Peter Thoman, Florian Tischler, Philip Salzmann, and Thomas Fahringer. 2022. The Celerity High-level API: C++ 20 for Accelerator Clusters. International Journal of Parallel Programming 50, 3-4 (2022), 341--359.
[31]
Mario S. Valdés-Tresanco, Mario E. Valdés-Tresanco, Pedro A. Valiente, and Ernesto Moreno. 2021. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of Chemical Theory and Computation 17, 10 (2021), 6281--6291. https://doi.org/10.1021/acs.jctc.1c00645
[32]
Emanuele Vitali, Federico Ficarelli, Mauro Bisson, Davide Gadioli, Massimiliano Fatica, Andrea R. Beccari, and Gianluca Palermo. 2022. GPU-optimized Approaches to Molecular Docking-based Virtual Screening in Drug Discovery: A Comparative Analysis.
[33]
Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Andrea Beccari, Carlo Cavazzoni, and Cristina Silvano. 2019. Exploiting OpenMP and OpenACC to accelerate a geometric approach to molecular docking in heterogeneous HPC nodes. The Journal of Supercomputing 75, 7 (2019), 3374--3396.

Cited By

View all
  • (2024)LIGATE - LIgand Generator and portable drug discovery platform AT ExascaleProceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions10.1145/3637543.3656335(107-109)Online publication date: 7-May-2024
  • (2024)GPU-optimized approaches to molecular docking-based virtual screening in drug discoveryJournal of Parallel and Distributed Computing10.1016/j.jpdc.2023.104819186:COnline publication date: 12-Apr-2024
  • (2024)Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUsThe Journal of Supercomputing10.1007/s11227-023-05884-y80:8(11798-11815)Online publication date: 2-Feb-2024

Index Terms

  1. Tunable and Portable Extreme-Scale Drug Discovery Platform at Exascale: the LIGATE Approach

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CF '23: Proceedings of the 20th ACM International Conference on Computing Frontiers
    May 2023
    419 pages
    ISBN:9798400701405
    DOI:10.1145/3587135
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 August 2023

    Check for updates

    Author Tags

    1. HPC
    2. Molecular Docking
    3. Molecular Dynamics
    4. Virtual Screening

    Qualifiers

    • Invited-talk
    • Research
    • Refereed limited

    Funding Sources

    • EuroHPC-JU - the European High-Performance Computing Joint Undertaking

    Conference

    CF '23
    Sponsor:

    Acceptance Rates

    CF '23 Paper Acceptance Rate 24 of 66 submissions, 36%;
    Overall Acceptance Rate 273 of 785 submissions, 35%

    Upcoming Conference

    CF '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)49
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 23 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)LIGATE - LIgand Generator and portable drug discovery platform AT ExascaleProceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions10.1145/3637543.3656335(107-109)Online publication date: 7-May-2024
    • (2024)GPU-optimized approaches to molecular docking-based virtual screening in drug discoveryJournal of Parallel and Distributed Computing10.1016/j.jpdc.2023.104819186:COnline publication date: 12-Apr-2024
    • (2024)Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUsThe Journal of Supercomputing10.1007/s11227-023-05884-y80:8(11798-11815)Online publication date: 2-Feb-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media