Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars
Pages 5969 - 5978
Abstract

The Mars Perseverance Rover represents a generational change in the scale of measurements that can be taken on Mars, however this increased resolution introduces new challenges for techniques in exploratory data analysis. The multiple different instruments on the rover each measures specific properties of interest to scientists, so analyzing how underlying phenomena affect multiple different instruments together is important to understand the full picture. However each instrument has a unique resolution, making the mapping between overlapping layers of data non-trivial. In this work, we introduce Nested Fusion, a method to combine arbitrarily layered datasets of different resolutions and produce a latent distribution at the highest possible resolution, encoding complex interrelationships between different measurements and scales. Our method is efficient for large datasets, can perform inference even on unseen data, and outperforms existing methods of dimensionality reduction and latent analysis on real-world Mars rover data. We have deployed our method Nested Fusion within a Mars science team at NASA Jet Propulsion Laboratory (JPL) and through multiple rounds of participatory design enabled greatly enhanced exploratory analysis workflows for real scientists. To ensure the reproducibility of our work we have open sourced our code on GitHub at https://github.com/pixlise/NestedFusion.
Supplemental Material
MOV File - ads0474-video
Promotional Video for KDD 2024 Applied Data Science Paper, Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars.
- Download
- 188.59 MB
References
[1]
Abigail C Allwood, Lawrence A Wade, Marc C Foote, William Timothy Elam, Joel A Hurowitz, Steven Battel, Douglas E Dawson, Robert W Denise, Eric M Ek, Martin S Gilbert, M.E. King, C.C. Liebe, T. Parker, D.A.K. Pedersen, D.P. Randall, R.F. Sharrow, M.E. Sondheim, G. Allen, K. Arnett, M.H. Au, C. Basset, M. Benn, J.C. Bousman, R.J. Calvet, L. Cinquini, B. Clark, S. Conaby, H.A. Conley, S. Davidoff, J. Delaney, T. Denver, E. Diaz, G.B. Doran, J. Ervin, M. Evans, D.O. Flannery, N. Gao, J. Gross, J. Grotzinger, B. Hannah, J.T. Harris, C.M. Harris, C.M. Heirwegh, C. Hernandez, E. Hertzberg, R.P. Hodyss, J.R. Holden, C. Hummel, M.A. Jadusingh, J.L. Jørgensen, J.H. Kawamura, A. Kitiyakara, K. Kozaczek, J.L. Lambert, P.R. Lawson, Y. Liu, K.M. Macneal, McLennan. S., P. McNally, P.L. Meras, J. Napoli, B.J. Naylor, P. Nemere, N. Pootrakul, R.A. Romero, R. Rosas, J. Sachs, M.E. Schein, T.P. Setterfield, V. Singh, E. Song, M.M. Soria, N.R. Tallarida, D.R. Thompson, M.M. Tice, L. Timmermann, V. Torossian, A. Treiman, S. Tsai, K. Uckert, J. Villalvazo, M. Wang, D.W. Wilson, S.C. Worel, P. Zamani, M. Zappe, and R. Zimmerman. 2020. PIXL: Planetary instrument for X-ray lithochemistry. Space Science Reviews, Vol. 216, 8 (2020), 1--132. https://doi.org/10.1007/s11214-020-00767--7
[2]
Frederik Otzen Bagger, Savvas Kinalis, and Nicolas Rapin. 2019. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic acids research, Vol. 47, D1 (2019), D881--D885.
[3]
Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel WH Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nature biotechnology, Vol. 37, 1 (2019), 38--44.
[4]
Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research (2018).
[5]
Ingo Brigandt and Alan Love. 2023. Reductionism in Biology. In The Stanford Encyclopedia of Philosophy Summer 2023 ed.), Edward N. Zalta and Uri Nodelman (Eds.). Metaphysics Research Lab, Stanford University.
[6]
Carl Craver and James Tabery. 2023. Mechanisms in Science. In The Stanford Encyclopedia of Philosophy Fall 2023 ed.), Edward N. Zalta and Uri Nodelman (Eds.). Metaphysics Research Lab, Stanford University.
[7]
Kenneth A. Farley, Kenneth H. Williford, Kathryn M. Stack, Rohit Bhartia, Al Chen, Manuel de la Torre, Kevin Hand, Yulia Goreva, Christopher D. K. Herd, Ricardo Hueso, Yang Liu, Justin N. Maki, German Martinez, Robert C. Moeller, Adam Nelessen, Claire E. Newman, Daniel Nunes, Adrian Ponce, Nicole Spanovich, Peter A. Willis, Luther W. Beegle, James F. Bell, Adrian J. Brown, Svein-Erik Hamran, Joel A. Hurowitz, Sylvestre Maurice, David A. Paige, Jose A. Rodriguez-Manfredi, Mitch Schulte, and Roger C. Wiens. 2020. Mars 2020 Mission Overview. Space Science Reviews, Vol. 216, 8 (03 Dec 2020), 142. https://doi.org/10.1007/s11214-020-00762-y
[8]
Adam J Gayoso. 2023. Deep Generative Modeling for Single-Cell Omics Data. Ph.,D. Dissertation. University of California, Berkeley.
[9]
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Stochastic variational inference. Journal of Machine Learning Research (2013).
[10]
Harold Hotelling. 1933. Analysis of a complex of statistical variables into principal components. Journal of educational psychology, Vol. 24, 6 (1933), 417.
[11]
Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. arxiv: 1312.6114 [stat.ML]
[12]
Joseph B Kruskal. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, Vol. 29, 1 (1964), 1--27.
[13]
Xin Li, Ondrej E Dyck, Mark P Oxley, Andrew R Lupini, Leland McInnes, John Healy, Stephen Jesse, and Sergei V Kalinin. 2019. Manifold learning of four-dimensional scanning transmission electron microscopy. npj Computational Materials, Vol. 5, 1 (2019), 5.
[14]
Catherine Lin, Cody Griffith, Kevin Zhu, and Varoon Mathur. 2018. Understanding Vulnerability of Children in Surrey. The University of British Columbia: Vancouver, BC, Canada (2018).
[15]
Leland McInnes, John Healy, and James Melville. 2020. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arxiv: 1802.03426 [stat.ML]
[16]
Karolyn A Oetjen, Katherine E Lindblad, Meghali Goswami, Gege Gui, Pradeep K Dagur, Catherine Lai, Laura W Dillon, J Philip McCoy, and Christopher S Hourigan. 2018. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI insight, Vol. 3, 23 (2018).
[17]
Alexander Pletl, Michael Fernandes, Nicolas Thomas, Angelo Pio Rossi, and Benedikt Elser. 2023. Spectral Clustering of CRISM Datasets in Jezero Crater Using UMAP and k-Means. Remote Sensing, Vol. 15, 4 (2023), 939.
[18]
Aaditya Ramdas, Nicolás García Trillos, and Marco Cuturi. 2017. On wasserstein two-sample testing and related families of nonparametric tests. Entropy, Vol. 19, 2 (2017), 47.
[19]
Shrijit Singh, Shreyansh Daftry, and Roberto Capobianco. 2022. Planetary Environment Prediction Using Generative Modeling. In AIAA SCITECH 2022 Forum. 2085.
[20]
Daniel Stoljar. 2024. Physicalism. In The Stanford Encyclopedia of Philosophy Spring 2024 ed.), Edward N. Zalta and Uri Nodelman (Eds.). Metaphysics Research Lab, Stanford University.
[21]
Joshua B Tenenbaum, Vin de Silva, and John C Langford. 2000. A global geometric framework for nonlinear dimensionality reduction. science, Vol. 290, 5500 (2000), 2319--2323.
[22]
David R Thompson, David T Flannery, Ravi Lanka, Abigail C Allwood, Brian D Bue, Benton C Clark, W Timothy Elam, Tara A Estlin, Robert P Hodyss, Joel A Hurowitz, et al. 2015. Automating X-ray fluorescence analysis for rapid astrobiology surveys. Astrobiology, Vol. 15, 11 (2015), 961--976.
[23]
Michael M Tice, Joel A Hurowitz, Abigail C Allwood, Michael WM Jones, Brendan J Orenstein, Scott Davidoff, Austin P Wright, David AK Pedersen, Jesper Henneke, Nicholas J Tosca, et al. 2022. Alteration history of Séítah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars. Science Advances, Vol. 8, 47 (2022), eabp9084.
[24]
Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research, Vol. 9, 11 (2008).
[25]
Raphael van Riel and Robert Van Gulick. 2023. Scientific Reduction. In The Stanford Encyclopedia of Philosophy Winter 2023 ed.), Edward N. Zalta and Uri Nodelman (Eds.). Metaphysics Research Lab, Stanford University.
[26]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, Vol. 30 (2017).
[27]
Eli N Weinstein and Debora Marks. 2021. A structured observation distribution for generative biological sequence prediction and forecasting. In International Conference on Machine Learning. PMLR, 11068--11079.
[28]
Austin P Wright, Peter Nemere, Adrian Galvin, Duen Horng Chau, and Scott Davidoff. 2023. Lessons from the Development of an Anomaly Detection Interface on the Mars Perseverance Rover using the ISHMAP Framework. In Proceedings of the 28th International Conference on Intelligent User Interfaces. 91--105.
[29]
Chenling Xu, Romain Lopez, Edouard Mehlman, Jeffrey Regier, Michael I Jordan, and Nir Yosef. 2021. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Molecular systems biology, Vol. 17, 1 (2021), e9620.
Index Terms
- Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars
Index terms have been assigned to the content through auto-classification.
Recommendations
Landing a Spacecraft on Mars
How much software does it take to land a spacecraft safely on Mars, and how do you make all that code reliable? This column describes such a software development process. The first Web extra at http://mars.jpl.nasa.gov/multimedia/videos/movies/...
Comments
Information & Contributors
Information
Published In

August 2024
6901 pages
Copyright © 2024 Owner/Author.
This work is licensed under a Creative Commons Attribution International 4.0 License.
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Published: 24 August 2024
Check for updates
Author Tags
Qualifiers
- Research-article
Funding Sources
Conference
KDD '24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
August 25 - 29, 2024
Barcelona, Spain
Acceptance Rates
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%
Upcoming Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 598Total Downloads
- Downloads (Last 12 months)598
- Downloads (Last 6 weeks)105
Reflects downloads up to 28 Jan 2025
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

