skip to main content
article

Register-machine based processes

Authors Info & Claims
Published:01 November 2001Publication History
Skip Abstract Section

Abstract

We study extensions of the process algebra axiom system ACP with two recursive operations: the binary Kleene star *, which is defined by x*y = x(x*y + y, and the push-down operation $, defined by x$y = x((x$y)(x$y)) + y. In this setting it is easy to represent register machine computation, and an equational theory results that is not decidable. In order to increase the expressive power, abstraction is then added: with rooted branching bisimulation equivalence each computable process can be expressed, and with rooted ô-bisimilarity each semi-computable process that initially is finitely branching can be expressed. Moreover, with abstraction and a finite number of auxiliary actions these results can be obtained without binary Kleene star. Finally, we consider two alternatives for the push-down operation. Each of these gives rise to similar results.

References

  1. ACETO, L., AND FOKKINK, W. J. 1997. An equational axiomatization for multi-exit iteration. Inf. Comput. 137, 2, 121-158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. ACETO, L., FOKKINK,W.J.,AND INGOLFSDOTTIR, A. 1998a. On a question of A. Salomaa: the equational theory of regular expressions over a singleton alphabet is not finitely based. Theoret. Comput. Sci. 209, 1/2, 163-178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. ACETO, L., FOKKINK,W.J.,AND INGOLFSDOTTIR, A. 1998b. A menagerie of non-finitely based process semantics over BPA : from ready simulation to completed traces. Math. Struct. Comput. Sci. 8,3, 193-230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. ACETO, L., FOKKINK,W.J.,AND INGOLFSDOTTIR, A. 1998c. A Cook's tour of equational axiomatizations for prefix iteration. In Proceedings of the 1st Conference on Foundations of Software Science and Computation Structures (FoSSaCS'98), (Lisbon, Portugal). M. Nivat, Ed. Lecture Notes in Computer Science, vol. 1378. Springer-Verlag, New York, pp. 20-34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. ACETO, L., FOKKINK,W.J.,VAN GLABBEEK,R.J.,AND INGOLFSDOTTIR, A. 1996. Axiomatizing prefix iteration with silent steps. Inf. Comput. 127, 1, 26-40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. ACETO, L., AND GROOTE, J. F. 1999. Acomplete equational axiomatization for MPAwith string iteration. Theoret. Comput. Sci. 211, 1/2, 339-374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. ACETO, L., AND INGOLFSDOTTIR, A. 1996. An equational axiomatization of observation congruence for prefix iteration. In Proceedings of the 5th Conference on Algebraic Methodology and Software Technology (AMAST'96) (Munich, Germany). M. Wirsing and M. Nivat, Eds. Lecture Notes in Computer Science, vol. 1101. Springer-Verlag, New York, pp. 195-209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. BAETEN,J.C.M.,BERGSTRA,J.A.,AND KLOP, J. W. 1987. On the consistency of Koomen's fair abstraction rule. Theoret. Comput. Sci. 51, 1/2, 129-176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. BAETEN,J.C.M.,BERGSTRA,J.A.,AND KLOP, J. W. 1993. Decidability of bisimulation equivalence for processes generating context-free languages. J. ACM 40, 3, 653-682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. BAETEN,J.C.M.,AND VERHOEF, C. 1993. A congruence theorem for structured operational semantics with predicates. In Proceedings CONCUR 93, (Hildesheim, Germany). E. Best, Ed. Lecture Notes in Computer Science, vol. 715. Springer-Verlag, New York, pp. 477-492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. BAETEN,J.C.M.,AND VERHOEF, C. 1995. Concrete process algebra. In Handbook of Logic in Computer Science; Volume IV; Syntactical Methods. S. Abramsky, D. Gabbay, and T. Maibaum, Eds., Oxford University Press, Oxford, England, pp. 149-268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. BAETEN,J.C.M.,AND WEIJLAND, W. P. 1990. Process Algebra. Cambridge Tracts in Theoretical Computer Science 18. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. BERGSTRA, J. A., BETHKE, I., AND PONSE, A. 1993. Process algebra with iteration. Report P9314 (June), Programming Research Group, University of Amsterdam. (See http://www.science.uva.nl/research/prog/reports/reports.html).Google ScholarGoogle Scholar
  14. BERGSTRA, J. A., BETHKE, I., AND PONSE, A. 1994. Process algebra with iteration and nesting. Comput. J. 37, 4, 243-258.Google ScholarGoogle ScholarCross RefCross Ref
  15. BERGSTRA, J. A., FOKKINK,W.J.,AND PONSE, A. 2001. Process algebra with recursive operations. In Handbook of Process Algebra. J. A. Bergstra, A. Ponse, and S. A. Smolka, Eds., Elsevier, North Holland, Amsterdam, The Netherlands, pp. 333-389.Google ScholarGoogle Scholar
  16. BERGSTRA,J.A.,AND KLOP, J. W. 1984. Process algebra for synchronous communication. Inform. Cont. 60, 1/3, 109-137.Google ScholarGoogle Scholar
  17. BERGSTRA,J.A.,AND KLOP, J. W. 1985. Algebra of communicating processes with abstraction. Theoret. Comput. Sci. 37, 1, 77-121.Google ScholarGoogle ScholarCross RefCross Ref
  18. BERGSTRA,J.A.,AND LOOTS, M. E. 1999. Programs, interfaces and components, report 006 (July). Artificial Intelligence Preprint Series, CKI, Department of Philosophy, Utrecht University. (See http://www.phil.uu.nl/ckipreprints.html).Google ScholarGoogle Scholar
  19. BERGSTRA,J.A.,AND PONSE, A. 2001. Non-reqular iterators in process algebra. Theoret. Comput. Sci. 269, 1-2, 203-229. (This is an extended version of two recursive generalizations of iteration process algebra. Report P9808 (June 1998), Programming Research Group, University of Amsterdam,) (See http://www.science.uva.nl/research/prog/reports/reports.html).Google ScholarGoogle Scholar
  20. BERGSTRA,J.A.,AND TUCKER, J. V. 1984. Top down design and the algebra of communicating processes. Sci. Comput. Prog. 5, 2, 171-199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. BOSELIE, J. 1995. Expressiveness results for process algebra with iteration. Master's dissertation Computer Science, University of Amsterdam, Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  22. FOKKINK, W. J. 1994. A complete equational axiomatization for prefix iteration. Inf. Proc. Lett. 52, 333-337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. FOKKINK, W. J. 1996. A complete axiomatization for prefix iteration in branching bisimulation. Fund. Inf. 26, 2, 103-113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. FOKKINK, W. J. 1997. Axiomatizations for the perpetual loop in process algebra. In Proceedings of the 24th Annual ICALP. P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, Eds. Springer-Verlag, New York, pp. 571-581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. FOKKINK, W. J. 2000. Introduction to Process Algebra. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. FOKKINK,W.J.,AND ZANTEMA, H. 1994. Basic process algebra with iteration: Completeness of its equational axioms. Comput. J. 37, 4, 259-267.Google ScholarGoogle Scholar
  27. GROOTE,J.F.,AND PONSE, A. 1995. The syntax and semantics of 'CRL. In Algebra of Communicating Processes (Utrecht 1994), Workshops in Computing. A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, Eds., Springer-Verlag, New York, pp. 26-62.Google ScholarGoogle Scholar
  28. GROOTE,J.F.,AND VAANDRAGER, F. W. 1992. Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100, 2, 202-260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. KAMSTEEG, G. 1999. Formalization of Process Algebra with Data in the Calculus of Constructions with Inductive Types. Ph.D. dissertation, Computer Science, Leiden University, Leiden.Google ScholarGoogle Scholar
  30. KLEENE, S. C. 1956. Representation of events in nerve nets and finite automata. In Automata Studies, Princeton University Press, Princeton, N.J., pp. 3-41.Google ScholarGoogle Scholar
  31. MILNER, R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, vol. 92. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. MINSKY, M. L. 1967. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, N.J. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. PARK, D. M. R. 1981. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI Conference. P. Deussen, Ed. Lecture Notes in Computer Science, vol. 104. Springer-Verlag, New York, pp. 167-183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. PONSE, A. 1996. Computable processes and bisimulation equivalence. Form. Asp. Comput. 8, 6, 648-678.Google ScholarGoogle ScholarCross RefCross Ref
  35. SEWELL, P. M. 1997. Nonaxiomatisability of equivalences over finite state processes. Ann. Pure Appl. Logic 90, 1/3, 163-191.Google ScholarGoogle Scholar
  36. VAN GLABBEEK, R. J. 1993. A complete axiomatization for branching bisimulation congruence of finitestate behaviours. In Proceedings of the 18th Symposium on Mathematical Foundations of Computer Science (MFCS'93) (Gdansk, Poland). A. Borzyszrowski and S. Sokolowski, Eds. Lecture Notes in Computer Science, vol. 711. Springer-Verlag, New York, pp. 473-484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. VAN GLABBEEK, R. J. 1997. Axiomatizing flat iteration. In Proceedings of the 8th Conference on Concurrency Theory (CONCUR'98) (Warsaw, Poland). A. Mazurkiewicz and J. Winkowski, Eds. Lecture Notes in Computer Science, vol. 1243, Springer-Verlag, New York, pp. 228-242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. VAN GLABBEEK,R.J.,AND WEIJLAND, W. 1989. Branching time and abstraction in bisimulation semantics (extended abstract). In G. RITTER Ed., Information Processing 89; Proceedings of the IFIP 11th World Computer Congress, San Fransisco 1989, pp. 613-618. North-Holland. Full version in J. ACM 43, 3, 1996, 555-600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. VAN GLABBEEK,R.J.,AND WEIJLAND, W. 1996. Branching time and abstraction in bisimulation semantics. J. ACM 43, 3, 555-600. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Register-machine based processes

                            Recommendations

                            Comments

                            Login options

                            Check if you have access through your login credentials or your institution to get full access on this article.

                            Sign in

                            Full Access

                            • Published in

                              cover image Journal of the ACM
                              Journal of the ACM  Volume 48, Issue 6
                              November 2001
                              151 pages
                              ISSN:0004-5411
                              EISSN:1557-735X
                              DOI:10.1145/504794
                              Issue’s Table of Contents

                              Copyright © 2001 ACM

                              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                              Publisher

                              Association for Computing Machinery

                              New York, NY, United States

                              Publication History

                              • Published: 1 November 2001
                              Published in jacm Volume 48, Issue 6

                              Permissions

                              Request permissions about this article.

                              Request Permissions

                              Check for updates

                              Qualifiers

                              • article

                            PDF Format

                            View or Download as a PDF file.

                            PDF

                            eReader

                            View online with eReader.

                            eReader