skip to main content
article
Open Access
Seminal Paper

Least squares conformal maps for automatic texture atlas generation

Published:01 July 2002Publication History
Skip Abstract Section

Abstract

A Texture Atlas is an efficient color representation for 3D Paint Systems. The model to be textured is decomposed into charts homeomorphic to discs, each chart is parameterized, and the unfolded charts are packed in texture space. Existing texture atlas methods for triangulated surfaces suffer from several limitations, requiring them to generate a large number of small charts with simple borders. The discontinuities between the charts cause artifacts, and make it difficult to paint large areas with regular patterns.In this paper, our main contribution is a new quasi-conformal parameterization method, based on a least-squares approximation of the Cauchy-Riemann equations. The so-defined objective function minimizes angle deformations, and we prove the following properties: the minimum is unique, independent of a similarity in texture space, independent of the resolution of the mesh and cannot generate triangle flips. The function is numerically well behaved and can therefore be very efficiently minimized. Our approach is robust, and can parameterize large charts with complex borders.We also introduce segmentation methods to decompose the model into charts with natural shapes, and a new packing algorithm to gather them in texture space. We demonstrate our approach applied to paint both scanned and modeled data sets.

References

  1. M. Agrawala, A. Beers, and M. Levoy. 3D painting on scanned surfaces. In Proc. 1995 Symposium on Interactive 3D Graphics, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Y. Azar and L. Epstein. On 2d packing. J. of Algorithms, (25):290-310, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Cigogni, C. Montani, C. Rocchini, and R. Scopino. A general method for recovering attributes values on simplified meshes. In Proc. of IEEE Visualization Conf., pages 59-66. ACM Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary meshes. In SIGGRAPH 95 Conf. Proc., pages 173-182. Addison Wesley, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Eells and L. Lemaire. Another report on harmonic maps. Bull. London Math. Soc., 20:385-524, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Floater. Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design, 14(3):231-250, April 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. In SIGGRAPH 00 Conf. Proc., pages 95-102. ACM Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parameterization for texture mapping. IEEE Transactions on Visualization and Computer Graphics, 6(2):181-189, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Hanrahan and P. Haeberli. Direct WYSIWYG painting and texturing on 3D shapes. In SIGGRAPH 90 Conf. Proc., pages 215-223. Addison Wesley, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Hormann and G. Greiner. MIPS: An efficient global parametrization method. In P.-J. Laurent, P. Sablonnière, and L. Schumaker, editors, Curve and Surface Design: Saint-Malo 1999, pages 153-162. Vanderbilt University Press, 2000.Google ScholarGoogle Scholar
  11. A. Hubeli and M. Gross. Multiresolution features extraction from unstructured meshes. In Proc. of IEEE Visualization Conf., 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Hurdal, P. Bowers, K. Stephenson, D. Sumners, K. Rehms, K. Schaper, and D. Rottenberg. Quasi-conformally flat mapping the human cerebellum. In Proc. of MICCAI'99, volume 1679 of Lecture Notes in Computer Science, pages 279-286. Springer-Verlag, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Igarashi and D. Cosgrove. Adaptive unwrapping for interactive texture painting. In Symp. on Interactive 3D Graphics, pages 209-216. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes. In SIGGRAPH 96 Conf. Proc., pages 313-324. Addison Wesley, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In Proc. of Solid Modeling and Applications, pages 130-140. ACM Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Lee, W. Sweldens, P. Schröder, L. Cowsat, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In SIGGRAPH 98 Conf. Proc., pages 95-104. Addison Wesley, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Lévy. Constrained texture mapping for polygonal meshes. In SIGGRAPH 01 Conf. Proc., pages 417-424. ACM Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared triangulated meshes. In SIGGRAPH 98 Conf. Proc., pages 343-352. Addison Wesley, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Lienhardt. Extension of the notion of map and subdivisions of a 3D space. In Proc. of 5th Symp. on Theo. Aspects in Comp. Sci., pages 301-311, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In SIGGRAPH 93 Conf. Proc., pages 27-34. Addison Wesley, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. V. Milenkovic. Rotational polygon containment and minimum enclosure using only robust 2D constructions. Computational Geometry, 13(1):3-19, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing-based module placement. In Proc. of ICCAD, pages 472-479. IEEE, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Pedersen. Decorating implicit surfaces. In SIGGRAPH 95 Conf. Proc., pages 291-300. Addison Wesley, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Math., 2(15), 1993.Google ScholarGoogle Scholar
  25. D. Piponi and G. Borshukov. Seamless texture mapping of subdivision surfaces by model pelting and texture blending. In SIGGRAPH 00 Conf. Proc., pages 471-478. ACM Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In SIGGRAPH 00 Conf. Proc., pages 465-470. ACM Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes. In SIGGRAPH 01 Conf. Proc., pages 409-416. ACM Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Sheffer and E. de Sturler. Param. of faceted surfaces for meshing using angle-based flattening. Engineering with Computers, 17(3):326-337, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  29. Y. Shinagawa, T. Kunii, and Y.-L. Kergosien. Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11(5):66-78, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W. Tutte. Convex representation of graphs. In Proc. London Math. Soc., volume 10, 1960.Google ScholarGoogle ScholarCross RefCross Ref
  31. G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multi-dimensional scaling. IEEE Transactions on Vis. and C.G., 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Least squares conformal maps for automatic texture atlas generation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 21, Issue 3
          July 2002
          548 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/566654
          Issue’s Table of Contents
          • cover image ACM Overlay Books
            Seminal Graphics Papers: Pushing the Boundaries, Volume 2
            August 2023
            893 pages
            ISBN:9798400708978
            DOI:10.1145/3596711
            • Editor:
            • Mary C. Whitton

          Copyright © 2002 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2002
          Published in tog Volume 21, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!