10.1145/860854.860891acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Computing power series solutions of a nonlinear PDE system

Published:03 August 2003Publication History

ABSTRACT

This paper presents a new algorithm to compute the power series solutions of a significant class of nonlinear systems of partial differential equations. The algorithm is very different from previous algorithms to perform this task. Those relie on differentiating iteratively the differential equations to get coefficients of the power series, one at a time. The algorithm presented here relies on using the linearisation of the system and the associated recurrences. At each step the order up to which the power series solution is known is doubled. The algorithm can be seen as belonging to the family of Newton iteration methods.

References

  1. F. Boulier and E. Hubert. phdiffalg: description, help pages and examples of use. Symbolic Computation Group, University of Waterloo, Ontario, Canada, 1998. Now available at http://www.inria.fr/cafe/Evelyne.Hubert/webdiffalg.Google ScholarGoogle Scholar
  2. F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In ISSAC. ACM Press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations for radicals of finitely generated differential ideals. Technical Report IT-306, LIFL, 1997.Google ScholarGoogle Scholar
  4. D. Bouziane, A. Kandri Rody, and H. Maârouf. Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. Journal of Symbolic Computation, 31(6):631--649, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal of the Association Computing Machinery, 25(4):581--595, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Carra Ferro. Gröbner bases and differential algebra. In AAECC, volume 356 of Lecture Notes in Computer Science. Springer-Verlag Berlin, 1987.Google ScholarGoogle Scholar
  7. J. Denef and L. Lipshitz. Power series solutions of algebraic differential equations. Mathematische Annalen, 267(2):213--238, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  8. K. O. Geddes. Convergence behaviour of the Newton iteration for first-order differential equations. In Symbolic and algebraic computation, pages 189--199. Springer, Berlin, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Guo, W. F. Keigher, P. J. Cassidy, and W. Y. Sit, editors. Differential Algebra and Related Topics. World Scientific Publishing Co., 2002.Google ScholarGoogle ScholarCross RefCross Ref
  10. E. Hubert. Factorisation free decomposition algorithms in differential algebra. Journal of Symbolic Computation, 29(4-5):641--662, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms I: Polynomial systems. In F.Winkler and U.Langer, editors, Symbolic and Numerical Scientific Computations, LNCS. Springer, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms II: Differential systems. In F.Winkler and U.Langer, editors, Symbolic and Numerical Scientific Computating, LNCS. Springer, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Kolchin. Selected works of Ellis Kolchin with commentary. Commentaries by Armand Borel, Michael F. Singer, Bruno Poizat, Alexandru Buium and Phyllis J. Cassidy, Edited and with a preface by Hyman Bass, Buium and Cassidy. American Mathematical Society, Providence, RI, 1999.Google ScholarGoogle Scholar
  14. E. R. Kolchin. Differential Algebra and Algebraic Groups, volume 54 of Pure and Applied Mathematics. Academic Press, New York-London, 1973.Google ScholarGoogle Scholar
  15. F. Lemaire. Contribution à l'algorithmique en algèbre différentielle. PhD thesis, Université des Sciences et Technologies de Lille, 2002.Google ScholarGoogle Scholar
  16. F. Lemaire. Les classements les plus généraux assurant l'analycité des solutions des systèmes orthonomes pour des conditions initiales analytiques. In CASC. Technische Universität München, 2002.Google ScholarGoogle Scholar
  17. E. L. Mansfield. Differential Gröbner Bases. PhD thesis, University of Sydney, 1991.Google ScholarGoogle Scholar
  18. F. Ollivier. Standard bases of differential ideals. In Applied algebra, algebraic algorithms and error-correcting codes (Tokyo, 1990), pages 304--321. Springer, Berlin, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Peladan-Germa. Testing equality in differential ring extensions defined by pde's and limit conditions. Applicable Algebra in Engineering, Communication and Computing, 13(4):257--288, 2002.Google ScholarGoogle Scholar
  20. G. J. Reid, A. D. Wittkopf, and A. Boulton. Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. of Appl. Math., 7:604 -- 635, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Riquier. Les systèmes d'équations aux dérivées partielles. Gauthier-Villars, Paris, 1910.Google ScholarGoogle Scholar
  22. J. F. Ritt. Differential Algebra, volume XXXIII of Colloquium publications. American Mathematical Society, 1950. http://www.ams.org/online_bks.Google ScholarGoogle Scholar
  23. A. Rosenfeld. Specializations in differential algebra. Transaction of the American Mathematical Society, 90:394--407, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. J. Rust, G. J. Reid, and A. D. Wittkopf. Existence and uniqueness theorems for formal power series solutions of analytic differential systems. In ISSAC, pages 105--112. ACM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Sedoglavic. A probabilistic algorithm to test local algebraic observability in polynomial time. In ISSAC, pages 309--316. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Seidenberg. Abstract differential algebra and the analytic case. Proceedings of the American Mathematical Society, 9:159--164, 1958.Google ScholarGoogle ScholarCross RefCross Ref
  27. W. Sit. The Ritt-Kolchin theory for differential polynomials. In Guo et al. {9}.Google ScholarGoogle Scholar
  28. J. van der Hoeven. Relax, but don't be too lazy. J. Symbolic Comput., 34(6):479--542, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Witkopf and G. Reid. The RIF package. CECM - Simon Fraser University - Vancouver, http://www.cecm.sfu.ca/ wittkopf/rif.html.Google ScholarGoogle Scholar
  30. W. T. Wu. On the foundation of algebraic differential geometry. Systems Science and Mathematical Sciences, 2(4):289--312, 1989.Google ScholarGoogle Scholar

Index Terms

  1. Computing power series solutions of a nonlinear PDE system

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!