skip to main content
research-article

GraphMineSuite: enabling high-performance and programmable graph mining algorithms with set algebra

Published: 01 July 2021 Publication History

Abstract

We propose GraphMineSuite (GMS): the first benchmarking suite for graph mining that facilitates evaluating and constructing high-performance graph mining algorithms. First, GMS comes with a benchmark specification based on extensive literature review, prescribing representative problems, algorithms, and datasets. Second, GMS offers a carefully designed software platform for seamless testing of different fine-grained elements of graph mining algorithms, such as graph representations or algorithm subroutines. The platform includes parallel implementations of more than 40 considered baselines, and it facilitates developing complex and fast mining algorithms. High modularity is possible by harnessing set algebra operations such as set intersection and difference, which enables breaking complex graph mining algorithms into simple building blocks that can be separately experimented with. GMS is supported with a broad concurrency analysis for portability in performance insights, and a novel performance metric to assess the throughput of graph mining algorithms, enabling more insightful evaluation. As use cases, we harness GMS to rapidly redesign and accelerate state-of-the-art baselines of core graph mining problems: degeneracy reordering (by >2X), maximal clique listing (by >9×), k-clique listing (by up to 1.1×), and subgraph isomorphism (by 2.5×), also obtaining better theoretical performance bounds.

References

[1]
C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded: A relational engine for graph processing. ACM Transactions on Database Systems (TODS), 42(4):1--44, 2017.
[2]
M. Adedoyin-Olowe, M. M. Gaber, and F. Stahl. A survey of data mining techniques for social media analysis. arXiv preprint arXiv:1312.4617, 2013.
[3]
C. C. Aggarwal and H. Wang. Graph data management and mining: A survey of algorithms and applications. In Managing and mining graph data, pages 13--68. Springer, 2010.
[4]
C. C. Aggarwal and H. Wang. A survey of clustering algorithms for graph data. In Managing and mining graph data, pages 275--301. Springer, 2010.
[5]
C. C. Aggarwal, H. Wang, et al. Managing and mining graph data, volume 40. Springer, 2010.
[6]
M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A benchmark suite for multithreaded graph algorithms executing on futuristic multicores. In 2015 IEEE International Symposium on Workload Characterization, pages 44--55. IEEE, 2015.
[7]
M. Al Hasan et al. Link prediction using supervised learning. In SDM, 2006.
[8]
M. Al Hasan and M. J. Zaki. A survey of link prediction in social networks. In Social network data analytics, pages 243--275. Springer, 2011.
[9]
K. Ammar and M. T. Özsu. Wgb: Towards a universal graph benchmark. In Advancing Big Data Benchmarks, pages 58--72. Springer, 2013.
[10]
T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench: a database benchmark based on the facebook social graph. In ACM SIGMOD, pages 1185--1196, 2013.
[11]
D. A. Bader and K. Madduri. Design and implementation of the hpcs graph analysis benchmark on symmetric multiprocessors. In International Conference on High-Performance Computing, pages 465--476. Springer, 2005.
[12]
S. Bassini, M. Danelutto, and P. Dazzi. Parallel Computing is Everywhere, volume 32. IOS Press, 2018.
[13]
S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite. arXiv preprint arXiv:1508.03619, 2015.
[14]
P. Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional data, pages 25--71. Springer, 2006.
[15]
M. Besta, A. Carigiet, Z. Vonarburg-Shmaria, K. Janda, L. Gianinazzi, and T. Hoefler. High-performance parallel graph coloring with strong guarantees on work, depth, and quality. In ACM/IEEE Supercomputing, 2020.
[16]
M. Besta and T. Hoefler. Survey and taxonomy of lossless graph compression and space-efficient graph representations. arXiv preprint arXiv:1806.01799, 2018.
[17]
M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and T. Hoefler. Log (graph): a near-optimal high-performance graph representation. In Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, page 7. ACM, 2018.
[18]
G. Bilardi and A. Pietracaprina. Models of Computation, Theoretical, pages 1150--1158. Springer US, Boston, MA, 2011.
[19]
G. E. Blelloch. Problem based benchmark suite, 2011.
[20]
G. E. Blelloch and B. M. Maggs. Parallel Algorithms, page 25. Chapman & Hall/CRC, 2 edition, 2010.
[21]
V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.
[22]
P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In World Wide Web Conf. (WWW), pages 595--601, 2004.
[23]
P. Boncz. LDBC: benchmarks for graph and RDF data management. In IDEAS, 2013.
[24]
C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. CACM, 1973.
[25]
M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular programs on gpus. In 2012 IEEE International Symposium on Workload Characterization (IISWC), pages 141--151. IEEE, 2012.
[26]
V. Carletti et al. Introducing vf3: A new algorithm for subgraph isomorphism. In Springer GbRPR, 2017.
[27]
V. Carletti et al. The VF3-light subgraph isomorphism algorithm: when doing less is more effective. In Springer S+SSPR, 2018.
[28]
V. Carletti et al. A parallel algorithm for subgraph isomorphism. In Springer GbRPR, 2019.
[29]
F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical Computer Science, 407(1--3):564--568, 2008.
[30]
P. Celis. Robin hood hashing. University of Waterloo, 1986.
[31]
D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM CSUR, 2006.
[32]
S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance with roaring bitmaps. Software: practice and experience, 46(5):709--719, 2016.
[33]
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE international symposium on workload characterization (IISWC), pages 44--54. Ieee, 2009.
[34]
H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng. G-miner: an efficient task-oriented graph mining system. In Proceedings of the Thirteenth EuroSys Conference, page 32. ACM, 2018.
[35]
X. Chen, R. Dathathri, G. Gill, and K. Pingali. Pangolin: An efficient and flexible graph mining system on cpu and gpu. arXiv preprint arXiv:1911.06969, 2019.
[36]
J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for maximal clique enumeration with limited memory. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1240--1248, 2012.
[37]
N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on computing, 14(1):210--223, 1985.
[38]
A. Ching et al. One trillion edges: Graph processing at facebook-scale. VLDB, 2015.
[39]
D. J. Cook and L. B. Holder. Mining graph data. John Wiley & Sons, 2006.
[40]
L. P. Cordella et al. A (sub) graph isomorphism algorithm for matching large graphs. IEEE TPAMI, 2004.
[41]
M. Danisch et al. Listing k-cliques in sparse real-world graphs. In WWW, 2018.
[42]
A. Das et al. Shared-memory parallel maximal clique enumeration. In IEEE HiPC, 2018.
[43]
A. Das, M. Svendsen, and S. Tirthapura. Change-sensitive algorithms for maintaining maximal cliques in a dynamic graph. CoRR, vol. abs/1601.06311, 2016.
[44]
C. Demetrescu, A. V. Goldberg, and D. S. Johnson. The Shortest Path Problem: Ninth DIMACS Implementation Challenge, volume 74. American Math. Soc., 2009.
[45]
L. Dhulipala et al. Theoretically efficient parallel graph algorithms can be fast and scalable. In ACM SPAA, 2018.
[46]
L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun. The graph based benchmark suite (gbbs). In GRADES and NDA, pages 1--8, 2020.
[47]
V. Dias et al. Fractal: A general-purpose graph pattern mining system. In ACM SIGMOD, 2019.
[48]
R. Diestel. Graph theory. Springer, 2018.
[49]
N. Du, B. Wu, L. Xu, B. Wang, and X. Pei. A parallel algorithm for enumerating all maximal cliques in complex network. In Sixth IEEE International Conference on Data Mining-Workshops (ICDMW'06), pages 320--324. IEEE, 2006.
[50]
J. D. Eblen, C. A. Phillips, G. L. Rogers, and M. A. Langston. The maximum clique enumeration problem: algorithms, applications, and implementations. In BMC bioinformatics, volume 13, page S5. Springer, 2012.
[51]
D. Eppstein et al. Listing all maximal cliques in sparse graphs in near-optimal time. In SAAC, 2010.
[52]
D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world graphs. In International Symposium on Experimental Algorithms, pages 364--375. Springer, 2011.
[53]
P. Erdős and A. Rényi. On the evolution of random graphs. Selected Papers of Alfréd Rényi, 1976.
[54]
M. Farach-Colton and M. Tsai. Computing the degeneracy of large graphs. In LATIN, 2014.
[55]
B. Gallagher. Matching structure and semantics: A survey on graph-based pattern matching. In AAAI Fall Symposium: Capturing and Using Patterns for Evidence Detection, pages 45--53, 2006.
[56]
M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin. An experimental comparison of pregel-like graph processing systems. Proceedings of the VLDB Endowment, 7(12):1047--1058, 2014.
[57]
S. Han, L. Zou, and J. X. Yu. Speeding up set intersections in graph algorithms using simd instructions. In Proceedings of the 2018 International Conference on Management of Data, pages 1587--1602. ACM, 2018.
[58]
W.-S. Han et al. Turbo iso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In ACM SIGMOD/PODS. ACM, 2013.
[59]
W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics for parallel graph coloring. In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '14, Prague, Czech Republic - June 23 - 25, 2014, pages 166--177, 2014.
[60]
T. Horváth et al. Cyclic pattern kernels for predictive graph mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2004.
[61]
M. Injadat, F. Salo, and A. B. Nassif. Data mining techniques in social media: A survey. Neurocomputing, 214:654--670, 2016.
[62]
A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica. {ASAP}: Fast, approximate graph pattern mining at scale. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 745--761, 2018.
[63]
S. Jabbour, N. Mhadhbi, B. Raddaoui, and L. Sais. Pushing the envelope in overlapping communities detection. In International Symposium on Intelligent Data Analysis, pages 151--163. Springer, 2018.
[64]
K. Jamshidi, R. Mahadasa, and K. Vora. Peregrine: a pattern-aware graph mining system. In Proceedings of the Fifteenth European Conference on Computer Systems, pages 1--16, 2020.
[65]
R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on computers, 100(11):1025--1034, 1973.
[66]
C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algorithms. The Knowledge Engineering Review, 28(1):75--105, 2013.
[67]
D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal independent sets. Information Processing Letters, 27(3):119--123, 1988.
[68]
A. Joshi, Y. Zhang, P. Bogdanov, and J.-H. Hwang. An efficient system for subgraph discovery. In 2018 IEEE International Conference on Big Data (Big Data), pages 703--712. IEEE, 2018.
[69]
D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the ACM (JACM), 43(4):601--640, 1996.
[70]
W. Khaouid et al. K-core decomposition of large networks on a single pc. Proceedings of the VLDB Endowment, 9(1):13--23, 2015.
[71]
I. Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science, 250(1--2):1--30, 2001.
[72]
F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics, 17(12):1198--1208, 2001.
[73]
J. Kunegis. Konect: the koblenz network collection. In Proc. of Intl. Conf. on World Wide Web (WWW), pages 1343--1350. ACM, 2013.
[74]
V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of algorithms for dense subgraph discovery. In Managing and Mining Graph Data, pages 303--336. Springer, 2010.
[75]
E. A. Leicht et al. Vertex similarity in networks. Physical Review E, 73(2):026120, 2006.
[76]
D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O'Hara, F. Saint-Jacques, and G. Ssi-Yan-Kai. Roaring bitmaps: Implementation of an optimized software library. Software: Practice and Experience, 48(4):867--895, 2018.
[77]
J. Leskovec et al. Kronecker graphs: An approach to modeling networks. J. of Machine Learning Research, 11(Feb):985--1042, 2010.
[78]
J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
[79]
B. Lessley, T. Perciano, M. Mathai, H. Childs, and E. W. Bethel. Maximal clique enumeration with data-parallel primitives. In 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), pages 16--25. IEEE, 2017.
[80]
D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the American society for information science and technology, 58(7):1019--1031, 2007.
[81]
H. Lin et al. Shentu: processing multi-trillion edge graphs on millions of cores in seconds. In ACM/IEEE Supercomputing. IEEE Press, 2018.
[82]
L. Lu, Y. Gu, and R. Grossman. dmaximalcliques: A distributed algorithm for enumerating all maximal cliques and maximal clique distribution. In 2010 IEEE International Conference on Data Mining Workshops, pages 1320--1327. IEEE, 2010.
[83]
L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6):1150--1170, 2011.
[84]
K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Scandinavian workshop on algorithm theory, pages 260--272. Springer, 2004.
[85]
G. Manoussakis. An output sensitive algorithm for maximal clique enumeration in sparse graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
[86]
D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. JACM, 1983.
[87]
D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu. Graphzero: Breaking symmetry for efficient graph mining. arXiv preprint arXiv:1911.12877, 2019.
[88]
D. Mawhirter and B. Wu. Automine: harmonizing high-level abstraction and high performance for graph mining. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 509--523. ACM, 2019.
[89]
C. McCreesh and P. Prosser. A parallel, backjumping subgraph isomorphism algorithm using supplemental graphs. In CP. Springer, 2015.
[90]
G. L. Miller et al. Improved parallel algorithms for spanners and hopsets. In ACM SPAA. ACM, 2015.
[91]
Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan. Bdgs: A scalable big data generator suite in big data benchmarking. In Advancing Big Data Benchmarks, pages 138--154. Springer, 2013.
[92]
P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to hardware performance counters. In Proceedings of the department of defense HPCMP users group conference, volume 710, 1999.
[93]
R. C. Murphy et al. Introducing the graph 500. Cray User's Group (CUG), 2010.
[94]
L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. Graphbig: understanding graph computing in the context of industrial solutions. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2015.
[95]
T. J. Ottosen and J. Vomlel. Honour thy neighbour---clique maintenance in dynamic graphs. on Probabilistic Graphical Models, page 201, 2010.
[96]
S. Parthasarathy, S. Tatikonda, and D. Ucar. A survey of graph mining techniques for biological datasets. In Managing and mining graph data, pages 547--580. Springer, 2010.
[97]
U. N. Raghavan et al. Near linear time algorithm to detect community structures in large-scale networks. Physical review E, 76(3):036106, 2007.
[98]
T. Ramraj and R. Prabhakar. Frequent subgraph mining algorithms-a survey. Procedia Computer Science, 47:197--204, 2015.
[99]
S. U. Rehman, A. U. Khan, and S. Fong. Graph mining: A survey of graph mining techniques. In Seventh International Conference on Digital Information Management (ICDIM 2012), pages 88--92. IEEE, 2012.
[100]
P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and F. Silva. A survey on subgraph counting: Concepts, algorithms and applications to network motifs and graphlets. arXiv preprint arXiv:1910.13011, 2019.
[101]
I. Robinson, J. Webber, and E. Eifrem. Graph databases. "O'Reilly Media, Inc.", 2013.
[102]
R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics and visualization. In AAAI, 2015.
[103]
S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27--64, 2007.
[104]
T. Schank. Algorithmic aspects of triangle-based network analysis. Phd in computer science, University Karlsruhe, 3, 2007.
[105]
M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park. A scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel and Distributed Computing, 69(4):417--428, 2009.
[106]
J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing framework for shared memory. In ACM SIGPLAN Notices, volume 48, pages 135--146, 2013.
[107]
J. Shun and K. Tangwongsan. Multicore triangle computations without tuning. In Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pages 149--160. IEEE, 2015.
[108]
C. L. Staudt and H. Meyerhenke. Engineering parallel algorithms for community detection in massive networks. IEEE Transactions on Parallel and Distributed Systems, 27(1):171--184, 2015.
[109]
V. Stix. Finding all maximal cliques in dynamic graphs. Computational Optimization and applications, 27(2):173--186, 2004.
[110]
J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu, and W.-m. W. Hwu. Parboil: A revised benchmark suite for scientific and commercial throughput computing. Center for Reliable and High-Performance Computing, 127, 2012.
[111]
M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining maximal cliques from a large graph using mapreduce: Tackling highly uneven subproblem sizes. Journal of Parallel and distributed computing, 79:104--114, 2015.
[112]
L. Tang and H. Liu. Graph mining applications to social network analysis. In Managing and Mining Graph Data, pages 487--513. Springer, 2010.
[113]
Y. Tang. Benchmarking graph databases with cyclone benchmark. 2016.
[114]
B. Taskar et al. Link prediction in relational data. In NIPS, pages 659--666, 2004.
[115]
C. H. Teixeira et al. Arabesque: a system for distributed graph mining. In Proceedings of the 25th Symposium on Operating Systems Principles, pages 425--440. ACM, 2015.
[116]
L. T. Thomas, S. R. Valluri, and K. Karlapalem. Margin: Maximal frequent subgraph mining. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(3):1--42, 2010.
[117]
E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci., 363(1):28--42, 2006.
[118]
S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505--517, 1977.
[119]
J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):31--42, 1976.
[120]
K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu. Rstream: marrying relational algebra with streaming for efficient graph mining on a single machine. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 763--782, 2018.
[121]
L. Wang, K. Hu, and Y. Tang. Robustness of link-prediction algorithm based on similarity and application to biological networks. Current Bioinformatics, 9(3):246--252, 2014.
[122]
L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, et al. Bigdatabench: A big data benchmark suite from internet services. In 2014 IEEE 20th international symposium on high performance computer architecture (HPCA), pages 488--499. IEEE, 2014.
[123]
T. Washio and H. Motoda. State of the art of graph-based data mining. Acm Sigkdd Explorations Newsletter, 5(1):59--68, 2003.
[124]
B. Wu, S. Yang, H. Zhao, and B. Wang. A distributed algorithm to enumerate all maximal cliques in mapreduce. In 2009 Fourth International Conference on Frontier of Computer Science and Technology, pages 45--51. IEEE, 2009.
[125]
Y. Xu, J. Cheng, and A. W.-C. Fu. Distributed maximal clique computation and management. IEEE Transactions on Services Computing, 9(1):110--122, 2015.
[126]
Z. Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang. Gardenia: A graph processing benchmark suite for next-generation accelerators. ACM Journal on Emerging Technologies in Computing Systems (JETC), 15(1):1--13, 2019.
[127]
D. Yan, H. Chen, J. Cheng, M. T. Özsu, Q. Zhang, and J. Lui. G-thinker: big graph mining made easier and faster. arXiv preprint arXiv:1709.03110, 2017.
[128]
D. Yan, W. Qu, G. Guo, and X. Wang. Prefixfpm: A parallel framework for general-purpose frequent pattern mining. In Proceedings of the 36th IEEE International Conference on Data Engineering (ICDE) 2020, 2020.
[129]
P. Yao et al. A locality-aware energy-efficient accelerator for graph mining applications. In IEEE/ACM MICRO, pages 895--907. IEEE, 2020.
[130]
Y. Zhang et al. Genome-scale computational approaches to memory-intensive applications in systems biology. In ACM/IEEE Supercomputing, pages 12--12. IEEE, 2005.
[131]
C. Zhao, Z. Zhang, P. Xu, T. Zheng, and X. Cheng. Kaleido: An efficient out-of-core graph mining system on a single machine. arXiv preprint arXiv:1905.09572, 2019.

Cited By

View all
  • (2024)Differentiating Set Intersections in Maximal Clique Enumeration by Function and Subproblem SizeProceedings of the 38th ACM International Conference on Supercomputing10.1145/3650200.3656607(150-163)Online publication date: 30-May-2024
  • (2023)Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph QueriesACM Computing Surveys10.1145/360493256:2(1-40)Online publication date: 15-Sep-2023
  • (2021)SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory SystemsMICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3466752.3480133(282-297)Online publication date: 18-Oct-2021
  1. GraphMineSuite: enabling high-performance and programmable graph mining algorithms with set algebra

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 14, Issue 11
      July 2021
      732 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      Published: 01 July 2021
      Published in PVLDB Volume 14, Issue 11

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)12
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 23 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Differentiating Set Intersections in Maximal Clique Enumeration by Function and Subproblem SizeProceedings of the 38th ACM International Conference on Supercomputing10.1145/3650200.3656607(150-163)Online publication date: 30-May-2024
      • (2023)Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph QueriesACM Computing Surveys10.1145/360493256:2(1-40)Online publication date: 15-Sep-2023
      • (2021)SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory SystemsMICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3466752.3480133(282-297)Online publication date: 18-Oct-2021

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media