article
Free Access

Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data

Abstract

We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added l1-norm penalty term. The problem as formulated is convex but the memory requirements and complexity of existing interior point methods are prohibitive for problems with more than tens of nodes. We present two new algorithms for solving problems with at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent, and can be interpreted as recursive l1-norm penalized regression. Our second algorithm, based on Nesterov's first order method, yields a complexity estimate with a better dependence on problem size than existing interior point methods. Using a log determinant relaxation of the log partition function (Wainwright and Jordan, 2006), we show that these same algorithms can be used to solve an approximate sparse maximum likelihood problem for the binary case. We test our algorithms on synthetic data, as well as on gene expression and senate voting records data.

References

  1. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: Tool for the unification of biology. Nature Genet., 25:25-29, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  2. D. Bertsekas. Nonlinear Programming. Athena Scientific, 1998.Google ScholarGoogle Scholar
  3. P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices. Annals of Statistics, 36(1):199-227, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Dahl, V. Roychowdhury, and L. Vandenberghe. Covariance selection for non-chordal graphs via chordal embedding. To appear in Optimization Methods and Software, Revised 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. d'Aspremont, L. El Ghaoui, M.I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. Advances in Neural Information Processing Systems, 17, 2004.Google ScholarGoogle Scholar
  6. A. Dobra and M. West. Bayesian covariance selection. Technical Report, 2004.Google ScholarGoogle Scholar
  7. J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2007.Google ScholarGoogle Scholar
  8. T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend. Functional discovery via a compendium of expression profiles. Cell, 102(1):109-126, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Lauritzen. Graphical Models. Springer Verlag, 1996.Google ScholarGoogle Scholar
  10. H. Li and J. Gui. Gradient directed regularization for sparse gaussian concentration graphs, with applications to inference of genetic networks. University of Pennsylvania Technical Report, 2005.Google ScholarGoogle Scholar
  11. Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the lasso. Annals of statistics, 34:1436-1462, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  13. G. Natsoulis, L. El Ghaoui, G. Lanckriet, A. Tolley, F. Leroy, S. Dunlea, B. Eynon, C. Pearson, S. Tugendreich, and K. Jarnagin. Classification of a large microarray data set: algorithm comparison and analysis of drug signatures. Genome Research, 15:724 -736, 2005.Google ScholarGoogle Scholar
  14. Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog., 103(1):127-152, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. R. Osborne, B. Presnell, and B. A. Turlach. On the lasso and its dual. Journal of Computational and Graphical Statistics, 9(2):319-337, 2000.Google ScholarGoogle Scholar
  16. T. P. Speed and H. T. Kiiveri. Gaussian markov distributions over finite graphs. Annals of Statistics, 14(1):138-150, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal statistical society, series B, 58(267-288), 1996.Google ScholarGoogle Scholar
  18. L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications, 19(4):499-533, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Wainwright and M. Jordan. Log-determinant relaxation for approximate inference in discrete markov random fields. IEEE Transactions on Signal Processing, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Wainwright, P. Ravikumar, and J. D. Lafferty. High-dimensional graphical model selection using l 1-regularized logistic regression. Proceedings of Advances in Neural Information Processing Systems, 2006.Google ScholarGoogle Scholar

Index Terms

  1. Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader
                About Cookies On This Site

                We use cookies to ensure that we give you the best experience on our website.

                Learn more

                Got it!