skip to main content
10.5555/1566770.1566790guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Interpretation of gene expression microarray experiments

Authors Info & Claims
Published:10 June 2007Publication History

ABSTRACT

Microarrays nowadays have an almost ubiquitous presence in modern biological research The extent and versatility of the techniques that are available for analysis and interpretation of microarray experiments can be somehow bewildering to the interested biologists. Functional genomics involves the highthroughput analysis of large datasets of information derived from various biological experiments. Microarray technology makes this possible by monitoring the emitting fluorescence reflecting the expression levels of thousands of genes simultaneously, which are bound to the oligonucleotide probes specific for each of the putative gene sequences comprising the total genome of the investigated organism, under a particular condition.. This chapter is a brief overview of the basic concepts involved in a microarray experiment; and it aspires to provide a concise overview of key issues regarding the various steps of implementation of this promising experimental methodology. In this sense, the chapter gives a feeling for what the data actually represent, and will provide information on the various computational methods that one can employ to derive meaningful results from such experiments.

References

  1. Quackenbush, J., Microarray Data Normalization and Transformation, Nat. Genetics 32 (2002) 496- 501.Google ScholarGoogle ScholarCross RefCross Ref
  2. Quackenbush J., Microarray Analysis and Tumor Classification, N. Engl. J. Med. 354 (2006) 2463- 2472.Google ScholarGoogle ScholarCross RefCross Ref
  3. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C.M., Lonning, P.E., Brown, P.O., Borresen-Dale, A.L., Botstein, D., Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets, Proc. Nat. Acad. Sci. 100 (2003) 8418-8423.Google ScholarGoogle ScholarCross RefCross Ref
  4. Mariadason, J.M., Arango, D., Shi, Q., Wilson, A.J., Corner, G.A., Nicholas, C., Aranes, M.J., Lesser, M., Schwartz, E.L., Augenlicht, L.H., Gene Expression Profiling-Based Prediction of Response of Colon Carcinoma Cells to 5-Fluorouracil and Camptothecin, Cancer Res. 63 (2003) 8791-8812.Google ScholarGoogle Scholar
  5. Allison, D.B., Cui, X., Page, G.P., Sabripour, M., Microarray Data Analysis: from Disarray to Consolidation and Consensus, Nat. Rev. Genet. 7 (2006) 55-65.Google ScholarGoogle ScholarCross RefCross Ref
  6. Babu, M., Introduction to Microarray Data Analysis, Computational Genomics: Theory and Applications, (Ed: R. Grant) Horizon Press (2004).Google ScholarGoogle Scholar
  7. Rosenweig, B.A., Pine, P.S., Domon, E.O., Morris, S.M., Chen, J.J., Sistare, F., Dye-Bias Correction in Dual-Labeled cDNA Microarray Gene Expression Measurements, Environ. Health Perspect. 112 (2004) 480-487.Google ScholarGoogle ScholarCross RefCross Ref
  8. Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X., Lonning, P.E., Borresen-Dale, A.L., Brown, P.O., Botstein, D., Molecular Portraits of Human Breast Tumours. Nature 406 (2000) 747-752.Google ScholarGoogle Scholar
  9. Gibson, G., Muse, S.V., A Primer of Genome Science, Sinauer Associates, Inc. Sunderland, MA (2002).Google ScholarGoogle Scholar
  10. Knudsen, S., Guide to Analysis of DNA Microarray Data. (Ed: N.J. Hoboken) John Wiley & Sons, Inc., (2004).Google ScholarGoogle Scholar
  11. Tarca, A.L., Romero, R., Draghici, S., Analysis of Microarray Experiments of Gene Expression Profiling, American Journal of Obstetrics and Gynecology 195 (2006) 373-388.Google ScholarGoogle ScholarCross RefCross Ref
  12. Speed, T., Statistical Analysis of Gene Expression Microarray Data, Chapman & Hall/CRC, (2003).Google ScholarGoogle Scholar
  13. Chatziioannou, A., Moulos, P., Kolisis, F., Aidinis, V., ANDROMEDA: a Pipeline for Versatile 2- Colour cDNA Microarray Data Analysis Implemented in MATLAB, (2007) submitted.Google ScholarGoogle Scholar
  14. Bilban, M., Buehler, L.K., Head, S., Desoye, G., Quaranta, V., Normalizing DNA Microarray Data, Curr. Issues Mol. Biol. 4 (2002) 57-64.Google ScholarGoogle Scholar
  15. Tseng, G.C., Oh, M.K., Rohlin, L., Liao, J.C., Wong, W.H., Issues in cDNA Microarray Analysis: Quality Filtering, Channel Normalization, Models of Variations and Assessment of Gene Effects, Nucleic Acids Research 29 (2001) 2549-2557.Google ScholarGoogle ScholarCross RefCross Ref
  16. Cleveland, W.S., Grosse, E., Shyu, W.M.: Local Regression Models, Statistical Models in S, (Eds: J.M. Chambers, T.J. Hastie), Wadsworth & Brooks/Cole Dormand, J.R. (1992).Google ScholarGoogle Scholar
  17. Hoffmann, R., Seidl, T., Dugas, M., Profound Effect of Normalization on Detection of Differentially Expressed Genes in Oligonucleotide Microarray Data Analysis, Genome Biol. 3 (2002) RESEARCH0033.Google ScholarGoogle Scholar
  18. Quackenbush, J., Computational Analysis of Microarray Data, Nat. Rev. Genet. 2 (2001) 418-427.Google ScholarGoogle ScholarCross RefCross Ref
  19. Finkelstein, D.B., Ewing, R., Gollub, J., Sterky, F., Somerville, S., Cherry, J.M., Iterative Linear Regression by Sector, Methods of Microarray Data Analysis, (Eds. S.M. Lin, K.F. Johnson), Cambridge, MA: Kluwer Academic (2002) 57-68.Google ScholarGoogle Scholar
  20. Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Earle- Hughes, J., Snesrud, E., Lee, N., Quackenbush, J., A Concise Guide to cDNA Microarray Analysis, Biotechniques 29 (2000) 548- 562.Google ScholarGoogle ScholarCross RefCross Ref
  21. Durbin, B.P., Hardin, J.S., Hawkins, D.M., Rocke, D.M.: A Variance Stabilizing Transformation for Gene-Expression Microarray Data, Bioinformatics 18 (2002) S105-S110.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., Normalization for cDNA Microarray Data: a Robust Composite Method Addressing Single and Multiple Slide Systematic Variation, Nucleic Acids Research 30 (2002) e15.Google ScholarGoogle ScholarCross RefCross Ref
  23. Cui, X., Kerr, M.K., Churchill, G.A., Transformations for cDNA Microarray Data, Stat. Appl. Genet. Mol. Biol. 2 (2003) Article4.Google ScholarGoogle ScholarCross RefCross Ref
  24. Wu, Z., Irizarry, R., Gentleman, R.C., Murillo, F.M., Spencer, F., A Model Based Background Adjustment for Oligonucleotide Expression Arrays, Collection of Biostatistics Research Archive (2004) Article1.Google ScholarGoogle Scholar
  25. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P., Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data, Biostatistics 4 (2003) 249-264.Google ScholarGoogle ScholarCross RefCross Ref
  26. Affymetrix, Statistical Algorithms Description Document, Affymetrix, Inc., (2002).Google ScholarGoogle Scholar
  27. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B., Missing Value Estimation Methods for DNA Microarrays, Bioinformatics 17 (2001) 520-525.Google ScholarGoogle ScholarCross RefCross Ref
  28. Nguyen, D.V., Wang, N., Carrol, R.J., Evaluation of Missing Value Estimation for Microarray Data, Journal of Data Science 2 (2004) 347-370.Google ScholarGoogle Scholar
  29. Dudoit, S., Yang, Y.H., Speed, T., Callow, M.J., Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments, Statistica Sinica 12 (2002) 111-139.Google ScholarGoogle Scholar
  30. Kerr, M.K., Martin, M., Churchill, G.A., Analysis of Variance for Gene Expression Microarray Data, J. Computational Biol. 7 (2000), 819-837.Google ScholarGoogle ScholarCross RefCross Ref
  31. Ideker, T., Thorsson, V., Siehel, A.F., Hood, L.E.: Testing for Differentially Expressed Genes by Maximum Likelihood Analysis of Microarray Data. J. Comput. Biol. 7 (2000) 805-817.Google ScholarGoogle Scholar
  32. Conover, W.J., Practical Nonparametric Statistics, Wiley (1980).Google ScholarGoogle Scholar
  33. Tusher, V.G., Tibshirani, R., Chum G.: Significance Analysis of Microarrays Applied to the Ionizing Radiation Response. Proc. Nat. Acad. Sci. 98 (2001) 5116-5121.Google ScholarGoogle ScholarCross RefCross Ref
  34. Pan, W., A Comparative Review of Statistical Methods for Discovering Differentially Expressed Genes in Replicated Microarray Experiments. Bioinformatics 18 (2002) 546-554.Google ScholarGoogle ScholarCross RefCross Ref
  35. Kim, S.Y., Lee, J.W., Sohn, I.S., Comparison of Various Statistical Methods for Identifying Differential Gene Expression in Replicated Microarray Data, Statistical Methods in Medical Research 15 (2006) 3- 20.Google ScholarGoogle ScholarCross RefCross Ref
  36. Yauk, C.L., Berndt, M.L., Williams, A., Douglas, G.R., Comprehensive Comparison of Six Microarray Technologies, Nucleic Acids Research 32 (2004) e124.Google ScholarGoogle ScholarCross RefCross Ref
  37. Canales, R.D., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., Hunkapiller, K., Jensen, R.D., Knight, C.R., Lee, K.Y., Ma, Y., Maqsodi, B., Papallo, A., Peters, E.H., Poulter, K., Ruppel, P.L., Samaha, R.R., Shi, L., Yang, W., Zhang, L., Goodsaid, F.M., Evaluation of cDNA Microarray Results with Quantitative Gene Expression Platforms, Nat. Biotech. 24 (2006) 1115-1122.Google ScholarGoogle ScholarCross RefCross Ref
  38. Guo, L., Lobenhofer, E.K., Wang, C., Shippy, R., Harris, S.C., Zhang, L., Mei, N.,Chen, T., Herman, D., Goodsaid, F.M., Hurban, P., Phillips, K.L., Xu, J., Deng, X., Sun, Y.A., Tong, W., Dragan, Y.P., Shi, L., Rat Toxigonecomic Study Reveals Analytical Consistency Across Microarray Platforms, Nat. Biotech. 24 (2006) 1162-1169.Google ScholarGoogle ScholarCross RefCross Ref
  39. Dudoit, S., Shaffer, J.P., Boldrick, J.C., Multiple Hypothesis Testing in Microarray Experiments, Statistical Science 18 (2003) 71-103.Google ScholarGoogle ScholarCross RefCross Ref
  40. Benjamini, Y., Hochberg, Y., Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing, J. R. Statist. Soc. 57 (1995) 289-300.Google ScholarGoogle Scholar
  41. Storey, J.D., Tibshirani, R., Statistical significance for genomewide studies, Proc. Nat. Acad. Sci. 100 (2003) 9440-9445.Google ScholarGoogle ScholarCross RefCross Ref
  42. Gentleman, R., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B. Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y.H., Zhang, J., Bioconductor: Open Software Development for Computational Biology and Bioinformatics, Genome Biology 5 (2004) R80.Google ScholarGoogle ScholarCross RefCross Ref
  43. Saeed A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., Quackenbush, J., TM4: a free, open-source system for microarray data management and analysis, Biotechniques 34 (2003) 374-378.Google ScholarGoogle ScholarCross RefCross Ref
  44. Chatziioannou, A., Moulos, P., Kolisis, F., Aidinis, V., ANDROMEDA: a Pipeline for Versatile 2- colour cDNA Microarray Data Analysis Implemented in MATLAB, submitted (2007).Google ScholarGoogle Scholar
  45. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Nat. Acad. Sci. 102 (2005) 15545-15550.Google ScholarGoogle Scholar
  46. Fortunel, N.O., Otu, H.H., Ng, H.H., Chen, J., Mu, X., Chevassut, T., Li, X., Joseph, M., Bailey, C., Hatzfeld, J. A., et al., Comment on "'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature", Science 302 (2003) 393.Google ScholarGoogle ScholarCross RefCross Ref
  47. Newton, J., Analysis of Microarray Gene Expression Data Using Machine Learning Techniques, Technical Report, University of Alberta, Canada, (2002).Google ScholarGoogle Scholar
  48. Kaufman, L., Rousseeuw, P.J., Finding Groups in Data: An Introduction to Cluster Analysis, New York, Wiley (1990).Google ScholarGoogle Scholar
  49. Hastie, T., Tibshirani, R., Eisen, M.B., Alizadeh, A., Levy, R., Staudt, L., Chan, W.C., Botstein, D., Brown, P.: 'Gene Shaving' as a Method for Identifying Distinct Sets of Genes with Similar Expression Patterns, Genome Biology 1 (2002) research0003.1-0003.21.Google ScholarGoogle Scholar
  50. Kohonen, T., Self-Organizing Maps, Springer, Berlin (1995). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., Ma, C., Self-Organizing Maps in Mining Gene Expression Data, Information Sciences 139 (2001) 79-96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Fu, L., Medico, E., FLAME, a Novel Fuzzy Clustering Method for the Analysis of DNA Microarray Data, BMC Bioinformatics 8 (2007) 3.Google ScholarGoogle ScholarCross RefCross Ref
  53. Dobbin, K., Simon, R., Comparison of Microarray Designs for Class Comparison and Class Discovery, Bioinformatics 18 (2002) 1438-1445.Google ScholarGoogle ScholarCross RefCross Ref
  54. Hastie, T., Tibshirani, R., Friedman, J., Elements of Statistical Learning, Springer-Verlag (2001).Google ScholarGoogle Scholar
  55. Simon, R., Supervised Analysis When the Number of Candidate Features (p) Greatly Exceeds The Number of Cases (n), ACM SIGKDD Explorations Newsletter 5 (2003) 3-36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection, Journal of Machine Learning Research 3 (2003) 1157-1182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Li, T., Zhang, C., Ogihara, M.: A Comparative Study of Feature Selection and Multiclass Classification Methods for Tissue Classification Based on Gene Expression, Bioinformatics 20 (2005) 2429-2437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Amaldi, E., Kann, V., On the Approximation of Minimizing non-zero Variables or Unsatisfied Relations in Linear Systems, Theoretical Computer Science 209 (1998) 237-260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection, Artificial Intelligence 97 (1997) 273- 324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Liu, H., Jinyan, L., Limsoon, W., A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns, Genome Informatics 13 (2002) 51- 60.Google ScholarGoogle Scholar
  61. Xing, E.P., Jordan, M.I., Karp, R.M., Feature Selection for High-Dimensional Genomic Microarray Data, Proceedings of the 18th International Conference on Machine Learning (2001) 601-608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Jolliffe, I.T.: Principal Component Analysis, Springer (2002).Google ScholarGoogle Scholar
  63. Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal Component Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series, Pac. Symp. Biocomput. 5 (2000) 452-463.Google ScholarGoogle Scholar
  64. Parmigiani, G., Garett, E.S., Irizarry, R.A., Zeger, S.L., The Analysis of Gene Expression Data: Methods and Software, Springer (2003).Google ScholarGoogle Scholar
  65. Hilsenbeck, S.G., Friedrichs, W.E., Schiff, R., O'Connell, P., Hansen, R.K., Osborne, C.K., Fuqua, S.A.W.: Statistical Analysis of Array Expression Data as Applied to the Problem of Tamoxifen Resistance, J. Natl. Cancer Institute 91 (1999) 453-459.Google ScholarGoogle ScholarCross RefCross Ref
  66. Yeung, K.W., Ruzzo, W.L.: Principal Component Analysis for Clustering Gene Expression Data, Bioinformatics 17 (2001) 763-774.Google ScholarGoogle ScholarCross RefCross Ref
  67. Liu, A., Zhang, Y., Gehan, E., Clarke, R: Block Principal Component Analysis with Application to Gene Microarray Data Classification, Stat. Med. 21 (2002) 3465-3474.Google ScholarGoogle ScholarCross RefCross Ref
  68. Tian, L., Greenberg, S.A., Kong, S.K., Altschuler, J., Kohane, S.A., Park, P.J.: Discovering Statistically Significant Pathways in Expression Profiling Studies, Proc. Nat. Acad. Sci. 102 (2005) 13544-13549.Google ScholarGoogle ScholarCross RefCross Ref
  69. Khatri, P., Draghici, S.: Ontological Analysis of Gene Expression Data: Current Tools, Limitations and Open Problems, Bioinformatics 21 (2005) 3587-3595. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. The Gene Ontology Consortium, Gene Ontology: Tool for the Unification of Biology, Nature Genet. 25 (2000) 25-29.Google ScholarGoogle ScholarCross RefCross Ref
  71. Dahlquist, K.D., Salomonis, N., Vranizan, K., Lawlor, S.C., Conklin, B.R.: GenMAPP, a New Tool for Viewing and Analyzing Microarray Data on Biological Pathways, Nat. Genet. 31 (2002) 19-20.Google ScholarGoogle ScholarCross RefCross Ref
  72. Nikitin, A., Egorov, S., Daraselia, N., Mazo, I.: Pathway Studio-The Analysis and Navigation of Molecular Networks, Bioinformatics 19 (2003) 2155-2157.Google ScholarGoogle ScholarCross RefCross Ref
  73. Doniger, S.W., Salomonis, N., Dahlquist, K.M.,Vranizan, K., Lawlor, S.C., Conklin, B.R., MAPPFinder: using Gene Ontology and GenMAPP to Create a Global Gene Expression Profile from Microarray Data, Genome Biology 4 (2003) R:7.Google ScholarGoogle ScholarCross RefCross Ref
  74. Beißbarth, T., Speed, T.P., GOstat: Find Statistically Overrepresented Gene Ontologies Within a Group of Genes, Bioinformatics 20 (2004) 1464-1465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Lee, H.K., Braynen, W., Keshav, K., Pavlidis, P., ErmineJ: Tool for Functional Analysis of Gene Expression Data Sets, BMC Bioinformatics 6 (2005) 269.Google ScholarGoogle ScholarCross RefCross Ref
  76. Pavlidis, P., Lewis, D.P., Noble, W.S.: Exploring Gene Expression Data with Class Score, Pac. Symp. Biocomput. 7 (2002) 474-485.Google ScholarGoogle Scholar
  77. Ramakrishnan, N., Antoniotti, M., Mishra, B.: Reconstructing Formal Temporal Models of Cellular Events using the GO Process Ontology, Bio-Ontologies SIG Meeting, ISMB 2005 Detroit, U.S.A. (2005).Google ScholarGoogle Scholar
  78. Bild, A., Potti, A., Nevins, J.R.: Linking Oncogenic Pathways with Therapeutic Opportunities, Nat. Rev. Cancer 6 (2006) 735-741.Google ScholarGoogle ScholarCross RefCross Ref
  79. Kim, S.Y., Volsky, D.J.: PAGE: Parametric Analysis of Gene Set Enrichment, BMC Bioinformatics 6 (2005) 144.Google ScholarGoogle ScholarCross RefCross Ref
  80. Argyropoulos, C.,, Chatziioannou, A.A, Nikiforidis G.,, Moustakas A.,, Kollias, G., and Aidinis, V. Operational criteria for selecting a cDNA microarray data normalization algorithm. Oncology reports. 15 Spec no. 4, (2006) 983-996.Google ScholarGoogle Scholar
  81. Hoffmann R, Seidl T, Dugas M (2002). Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biol 3:RESEARCH0033.Google ScholarGoogle Scholar

Index Terms

  1. Interpretation of gene expression microarray experiments
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image Guide Proceedings
              Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies
              June 2007
              412 pages
              ISBN:9781586037802
              • Editors:
              • Ilias Maglogiannis,
              • Kostas Karpouzis,
              • Manolis Wallace,
              • John Soldatos

              Publisher

              IOS Press

              Netherlands

              Publication History

              • Published: 10 June 2007

              Qualifiers

              • Article
            • Article Metrics

              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0

              Other Metrics