skip to main content
10.5555/1769371.1769395guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Assessing the performance of a graph-based clustering algorithm

Authors Info & Claims
Published:11 June 2007Publication History

ABSTRACT

Graph-based clustering algorithms are particularly suited for dealing with data that do not come from a Gaussian or a spherical distribution. They can be used for detecting clusters of any size and shape without the need of specifying the actual number of clusters; moreover, they can be profitably used in cluster detection problems.

In this paper, we propose a detailed performance evaluation of four different graph-based clustering approaches. Three of the algorithms selected for comparison have been chosen from the literature. While these algorithms do not require the setting of the number of clusters, they need, however, some parameters to be provided by the user. So, as the fourth algorithm under comparison, we propose in this paper an approach that overcomes this limitation, proving to be an effective solution in real applications where a completely unsupervised method is desirable.

References

  1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264-323 (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc, Upper Saddle River, NJ, USA (1988). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Kohonen, T.: Self-organizing maps. Springer-Verlag, Heidelberg, Germany (1995). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Juszczak, P.: Learning to recognise. A study on one-class classification and active learning, PhD thesis, Delft University of Technology, ISBN: 978-90-9020684-4 (2006).Google ScholarGoogle Scholar
  5. Wu, Z., Leahy, R.: An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation. IEEE Transactions on PAMI 15(11), 1101- 1113 (1993). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Günter, S., Bunke, H.: Validation indices for graph clustering. Pattern Recognition Letters 24(8), 1107-1113 (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Malik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1650-1654 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568-579. Springer, Heidelberg (2003).Google ScholarGoogle Scholar
  9. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000).Google ScholarGoogle Scholar
  10. Kannan, R., Vampala, S., Vetta, A.: On Clustering: Good, Bad and Spectral. In: Foundations of Computer Science 2000, pp. 367-378 (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gaertler, M.: Clustering with spectral methods, Master's thesis, Universitat Konstanz (2002).Google ScholarGoogle Scholar
  12. Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20, 68-86 (1971). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms, Computer Science Press (1978). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Enright, A.J., van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575-1584 (2002).Google ScholarGoogle ScholarCross RefCross Ref
  16. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans. Pattern Analysis and Machine Intelligence 1, 224-227 (1979).Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Dunn, C., Fuzzy, A.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybernetics 3, 32-57 (1973).Google ScholarGoogle ScholarCross RefCross Ref
  18. Calinski, R.B., Harabasz, J.: A Dendrite Method for Cluster Analysis. Comm. in Statistics 3, 1-27 (1974).Google ScholarGoogle ScholarCross RefCross Ref
  19. Xie, X.L., Beni, G., Validity, A.: A Validity Measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 841-847 (1991). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hubert, L., Schultz, J.: Quadratic assignment as a general data-analysis strategy. British Journal of Mathematical and Statistical Psychology 29, 190-241 (1976).Google ScholarGoogle ScholarCross RefCross Ref
  21. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888-905 (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shental, N., Zomet, A., Hertz, T., Weiss, Y.: Pairwise Clustering and Graphical Models. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA (2004).Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image Guide Proceedings
    GbRPR'07: Proceedings of the 6th IAPR-TC-15 international conference on Graph-based representations in pattern recognition
    June 2007
    416 pages
    ISBN:9783540729020

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    • Published: 11 June 2007

    Qualifiers

    • Article