skip to main content
10.5555/1777942.1778001guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Visualization of topology representing networks

Authors Info & Claims
Published:16 December 2007Publication History

ABSTRACT

As data analysis tasks often have to face the analysis of huge and complex data sets there is a need for new algorithms that combine vector quantization and mapping methods to visualize the hidden data structure in a low-dimensional vector space. In this paper a new class of algorithms is defined. Topology representing networks are applied to quantify and disclose the data structure and different nonlinear mapping algorithms for the low-dimensional visualization are applied for the mapping of the quantized data. To evaluate the main properties of the resulted topology representing network based mapping methods a detailed analysis based on the wine benchmark example is given.

References

  1. Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds. Techn. Rep., Stanford Univ. (2000).Google ScholarGoogle Scholar
  2. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics. Springer, New York (1997).Google ScholarGoogle Scholar
  3. Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas network. Neural Networks 19(6), 923-934 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Estévez, P.A., Chong, A.M., Held, C.M., PerezC., A.: Nonlinear Projection Using Geodesic Distances and the Neural Gas Network. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 464-473. Springer, Heidelberg (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Hebb, D.O.: The organization of behavior. John Wiley and Son Inc., New York (1949).Google ScholarGoogle Scholar
  6. Hoteling, H.: Analysis of a complex of statistical variables into principal components. Journal of Education Psychology 24, 417-441 (1933).Google ScholarGoogle ScholarCross RefCross Ref
  7. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1996).Google ScholarGoogle Scholar
  8. Kohonen, T.: Self-Organising Maps, 2nd edn. Springer, Berlin (1995). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., Castrén, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinf. 4(48) (2003).Google ScholarGoogle Scholar
  10. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-297 (1967).Google ScholarGoogle Scholar
  11. Martinetz, T.M., Schulten, K.J.: A neural-gas network learns topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Netw., pp. 397-402 (1991).Google ScholarGoogle Scholar
  12. Martinetz, T.M., Shulten, K.J.: Topology representing networks. Neural Networks 7(3), 507-522 (1994). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Muhammed, H.H.: Unsupervised Fuzzy Clustering Using Weighted Incremental Neural Networks. International Journal of Neural Systems 14(6), 355-371 (2004).Google ScholarGoogle ScholarCross RefCross Ref
  14. Sammon, J.W.: A Non-Linear Mapping for Data Structure Analysis. IEEE Trans. on Computers C18(5), 401-409 (1969). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Si, J., Lin, S., Vuong, M.-A.: Dynamic topology representing networks. Neural Networks 13, 617-627 (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology Representing Network Map-A new Tool for Visualization of High-Dimensional Data. In: LNCS Transactions on Computational Science (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19, 889-899 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yin, H.: ViSOM-A novel method for multivariate data projection and structure visualisation. IEEE Trans. on Neural Networks 13, 237-243 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image Guide Proceedings
    IDEAL'07: Proceedings of the 8th international conference on Intelligent data engineering and automated learning
    December 2007
    1174 pages
    ISBN:3540772251
    • Editors:
    • Hujun Yin,
    • Peter Tino,
    • Will Byrne,
    • Xin Yao,
    • Emilio Corchado

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    • Published: 16 December 2007

    Qualifiers

    • Article
  • Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics