skip to main content
10.5555/1781194.1781218guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Unsupervised acoustic classification of bird species using hierarchical self-organizing maps

Authors Info & Claims
Published:04 December 2007Publication History

ABSTRACT

In this paper, we propose the application of hierarchical self-organizing maps to the unsupervised acoustic classification of bird species. We describe a series of experiments on the automated categorization of tropical antbirds from their songs. Experimental results showed that accurate classification can be achieved using the proposed model. In addition, we discuss how categorization capabilities could be deployed in sensor arrays.

References

  1. Catchpole, C.K., Slater, P.L.B.: Bird song biological themes and variations. Cambridge University Press, Cambridge (1995)Google ScholarGoogle Scholar
  2. Charif, R.A., Clark, C.W., Fistrup, K.M.: Raven 1.2 user's manual. Cornell Laboratory of Ornithology, Ithaca, NY (2004)Google ScholarGoogle Scholar
  3. Collier, T.C., Taylor, C.E.: Self-Organization in Sensor Networks. Journal of Parallel and Distributed Computing 64(7), 866-873 (2004) Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Estrin, D., Girod, L., Pottie, G.: Srivastava, M.: Instrumenting the world with wireless sensor networks. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP (2001)Google ScholarGoogle Scholar
  5. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the theory of neural computation. Addison-Wesley, Reading (1991) Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kohonen, T.: Self-organizing maps, 2nd edn. Springer, Heidelberg (1997) Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Lee, Y., Riggle, J., Collier, T.C., et al.: Adaptive communication among collaborative agents: Preliminary results with symbol grounding. In: Sugisaka, M., Tanaka, H. (eds.) AROB 8th. Proceedings of the Eighth International Symposium on Artificial Life and Robotics, Beppu, Oita Japan, January 24-26, 2003, pp. 149-155 (2003)Google ScholarGoogle Scholar
  8. Nelson, D.A.: The importance of invariant and distinctive features in species recognition of bird song. Condor 91(1), 120-130 (1989)Google ScholarGoogle ScholarCross RefCross Ref
  9. Pfeifer, R., Bongard, J.: How the body shapes the way we think. MIT Press, Cambridge (2007) Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Rabiner, L., Juang, B.H.: Fundamentals of speech recognition. Prentice-Hall, Englewood Cliffs (1993) Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Stabler, E.P., Collier, T.C., Kobele, G.M., et al.: The learning and emergence of mildly context sensitive languages. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, Springer, Heidelberg (2003)Google ScholarGoogle ScholarCross RefCross Ref
  12. Taylor, C.E.: From cognition in animals to cognition in superorganisms. In: Bekoff, M., Allen, C., Gurghardt, G. (eds.) The Cognitive Animal. Empirical and Theoretical Perspectives on Animal Cognition, MIT Press, Cambridge (2002)Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image Guide Proceedings
    ACAL'07: Proceedings of the 3rd Australian conference on Progress in artificial life
    December 2007
    402 pages
    ISBN:3540769307
    • Editors:
    • Marcus Randall,
    • Hussein A. Abbass,
    • Janet Wiles

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    • Published: 4 December 2007

    Qualifiers

    • Article