skip to main content
10.5555/1924943.1924962acmotherconferencesArticle/Chapter ViewAbstractPublication PagesosdiConference Proceedingsconference-collections
Article

Reining in the outliers in map-reduce clusters using Mantri

Published:04 October 2010Publication History

ABSTRACT

Experience froman operational Map-Reduce cluster reveals that outliers significantly prolong job completion. The causes for outliers include run-time contention for processor, memory and other resources, disk failures, varying bandwidth and congestion along network paths and, imbalance in task workload. We present Mantri, a system that monitors tasks and culls outliers using cause- and resource-aware techniques. Mantri's strategies include restarting outliers, network-aware placement of tasks and protecting outputs of valuable tasks. Using real-time progress reports, Mantri detects and acts on outliers early in their lifetime. Early action frees up resources that can be used by subsequent tasks and expedites the job overall. Acting based on the causes and the resource and opportunity cost of actions lets Mantri improve over prior work that only duplicates the laggards. Deployment in Bing's production clusters and trace-driven simulations show that Mantri improves job completion times by 32%.

References

  1. Hadoop distributed filesystem. http://hadoop.apache.org.Google ScholarGoogle Scholar
  2. A. Faraj, X. Yuan, D. Lowenthal. STAR-MPI: Self Tuned Adaptive Routines for MPI Collective Operations. In SC, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. I. Ahmad and M. K. Dhodhi. Semi-distributed load balancing for massively parallel multicomputer systems. In IEEE TSE, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, and Y. Lu. Reigning in the outliers inmap-reduce clusters. Technical Report MSR-TR-2010-69, Microsoft Research, 2010.Google ScholarGoogle Scholar
  6. B. Ucar, C. Aykanat, K. Kaya, M. Ikinci. Task assignment in Heterogeneous Computing Systems. In JPDC, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An analysis of data corruption in the storage stack. In FAST, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive Datasets. In VLDB, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmleegy, and R. Sears. Mapreduce online. In NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Culler et al. LogP: Towards a Realistic Model of Parallel Computation. In SIGPLAN PPoPP, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17(2), 1969.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Isard et al. Dryad: Distributed Data-parallel Programs from Sequential Building Blocks. In Eurosys, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the Tightrope: Responsive Yet Stable Traffic Engineering. In SIGCOMM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intermediate data fault-tolerant. In SOCC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Krishnamurthy and K. Yelick. Analysis and optimizations for shared address space programs. JPDC, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center Network Architecture. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg. Quincy: Fair scheduling for distributed computing clusters. In SOSP, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Lauria and A. Chien. MPI-FM: High Performance MPI on Workstation Clusters. In JPDC, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving MapReduce Performance in Heterogeneous Environments. In OSDI, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Patarasuk, A. Faraj, X. Yuan. Pipelined Broadcast on Ethernet Switched Clusters. In IEEE IPDPS, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. R. Madden, and M. Stonebraker. A comparison of approaches to large scale data analysis. In SIGMOD, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken. Nature of Datacenter Traffic: Measurements and Analysis. In IMC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Manoharan. Effect of task duplication on assignment of dependency graphs. In Parallel Comput., 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Sandholm and K. Lai. Mapreduce optimization using regulated dynamic prioritization. In SIGMETRICS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Kwon, M. Balazinska, B. Howe, J. Rolia. Skew-Resistant Parallel Processing of Feature-Extracting Scientific User-Defined Functions. In SOCC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, J. Currey. DryadLINQ: A System for General-Purpose Data-Parallel Computing Using a High-Level Language. In OSDI, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggregation for Data-Parallel Computing: Interfaces, Impl. In SOSP, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reining in the outliers in map-reduce clusters using Mantri
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        OSDI'10: Proceedings of the 9th USENIX conference on Operating systems design and implementation
        October 2010
        386 pages

        Publisher

        USENIX Association

        United States

        Publication History

        • Published: 4 October 2010

        Check for updates

        Qualifiers

        • Article