skip to main content
10.5555/2023332.2023352guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Studying the hybridization of artificial neural networks in HECIC

Authors Info & Claims
Published:08 June 2011Publication History

ABSTRACT

One of the most relevant tasks concerning Machine Learning is the induction of classifiers, which can be used to classify or to predict. Those classifiers can be used in an isolated way, or can be combined to build a multiple classifier system. Building many-layered systems or knowing relation between different base classifiers are of special interest. Thus, in this paper we will use the HECIC system which consists of two layers: the first layer is a multiple classifier system that processes all the examples and tries to classify them; the second layer is an individual classifier that learns using the examples that are not unanimously classified by the first layer (incorporating new information). While using this system in a previous work we detected that some combinations that hybridize artificial neural networks (ANN) in one of the two layers seemed to get high-accuracy results. Thus, in this paper we have focused on the study of the improvement achieved by using different kinds of ANN in this two-layered system.

References

  1. Kononenko, I., Kukar, M.: Machine Learning and Data Mining: Introduction to Principles and Algorithms. Horwood Publishing (2007) Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000) Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993-1001 (1990) Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gama, J., Brazdil, P.: Cascade generalization. Machine Learning 41, 315-343 (2000) Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Computation 14(10), 2497-2529 (2002) Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chindaro, S., Sirlantzis, K., Fairhurst, M.C.: Modelling multiple-classifier relationships using bayesian belief networks. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 312-321. Springer, Heidelberg (2007) Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ramos-Jiménez, G., del Campo-ávila, J., Morales-Bueno, R.: Hybridizing ensemble classifiers with individual classifiers. In: International Conference on Intelligent Systems Design and Applications. Workshop on Hybrid Learning for Artificial Neural Networks: Architectures and Applications, pp. 199-202. IEEE Computer Society, Los Alamitos (2009) Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ramos-Jiménez, G., del Campo-ávila, J., Morales-Bueno, R.: ML-CIDIM: Multiple layers of multiple classifier systems based on CIDIM. In: Šlězak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 138-146. Springer, Heidelberg (2005) Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Freund, Y.: Boosting a weak learning algorithm by majority. Information and Computation 121, 256-285 (1995) Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996) Google ScholarGoogle ScholarCross RefCross Ref
  11. Aslam, J.A., Decatur, S.E.: General bounds on statistical query learning and pac learning with noise via hypothesis boosting. Information and Computation 141, 85-118 (1998) Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36, 105-142 (1999) Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning (ICML-1996), pp. 146-148 (1996)Google ScholarGoogle Scholar
  14. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37-66 (1991) Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993) Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence (UAI- 1995), pp. 338-345. Morgan Kaufmann, San Francisco (1995) Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Academic Press, London (1981)Google ScholarGoogle Scholar
  18. Kohonen, T.: Self-organizing maps. Springer-Verlag, New York, Inc. (1997) Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. In: SIGKDD Explorations, vol. 11, pp. 10-18 (2009) Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Studying the hybridization of artificial neural networks in HECIC
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image Guide Proceedings
          IWANN'11: Proceedings of the 11th international conference on Artificial neural networks conference on Advances in computational intelligence - Volume Part II
          June 2011
          684 pages
          ISBN:9783642214974
          • Editors:
          • Joan Cabestany,
          • Ignacio Rojas,
          • Gonzalo Joya

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          • Published: 8 June 2011

          Qualifiers

          • Article
        • Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0

          Other Metrics