skip to main content
10.5555/2051179.2051185guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Two classes of algorithms for data clustering

Authors Info & Claims
Published:28 October 2011Publication History

ABSTRACT

The two classes of agglomerative hierarchical clustering algorithms and K-means algorithms are overviewed. Moreover recent topics of kernel functions and semi-supervised clustering in the two classes are discussed. This paper reviews traditional methods as well as new techniques.

References

  1. Akaike, H.: A Bayesian Analysis of the Minimum AIC Procedure. Annals of the Institute of Statistical Mathematics 30(1), 9-14 (1978).Google ScholarGoogle ScholarCross RefCross Ref
  2. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New York (1973).Google ScholarGoogle Scholar
  3. Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic Framework for Semi-Supervised Clustering. In: Proc. of the Tenth ACM SIGKDD (KDD 2004), pp. 59-68 (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Basu, S., Banerjee, A., Mooney, R.J.: Active Semi-Supervision for Pairwise Constrained Clustering. In: Proc. of the SIAM International Conference on Data Mining (SDM 2004), pp. 333-344 (2004).Google ScholarGoogle ScholarCross RefCross Ref
  5. Basu, S., Davidson, I., Wagstaff, K.L. (eds.): Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC, Boca Raton (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bezdek, J.C., Keller, J., Krishnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bouchachia, A., Pedrycz, W.: A Semi-supervised Clustering Algorithm for Data Exploration. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS (LNAI), vol. 2715, pp. 328-337. Springer, Heidelberg (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Davé, R.N., Krishnapuram, R.: Robust Clustering Methods: A Unified View. IEEE Trans. on Fuzzy Systems 5(2), 270-293 (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. B39, 1-38 (1977).Google ScholarGoogle Scholar
  12. Dumitrescu, D., Lazzerini, B., Jain, L.C.: Fuzzy Sets and Their Application to Clustering and Training. CRC Press, Boca Raton (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons (1973).Google ScholarGoogle Scholar
  14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-separated Clusters. J. of Cybernetics 3, 32-57 (1974).Google ScholarGoogle Scholar
  16. Dunn, J.C.: Well-separated Clusters and Optimal Fuzzy Partitions. J. of Cybernetics 4, 95-104 (1974).Google ScholarGoogle Scholar
  17. Endo, Y., Haruyama, H., Okubo, T.: On Some Hierarchical Clustering Algorithms Using Kernel Functions. In: Proc. of FUZZ-IEEE 2004, CD-ROM Proc., Budapest, Hungary, July 25-29, pp. 1-6 (2004).Google ScholarGoogle Scholar
  18. Everitt, B.S.: Cluster Analysis, 3rd edn. Arnold, London (1993).Google ScholarGoogle Scholar
  19. Girolami, M.: Mercer Kernel Based Clustering in Feature Space. IEEE Trans. on Neural Networks 13(3), 780-784 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hashimoto, W., Nakamura, T., Miyamoto, S.: Comparison and Evaluation of Different Cluster Validity Measures Including Their Kernelization. Journal of Advanced Computational Intelligence and Intelligent Informatics 13(3), 204-209 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  21. Hathaway, R.J., Bezdek, J.C.: Switching Regression Models and Fuzzy Clustering. IEEE Trans. on Fuzzy Systems 1, 195-204 (1993).Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999).Google ScholarGoogle Scholar
  23. Hwang, J., Miyamoto, S.: Kernel Functions Derived from Fuzzy Clustering and Their Application to Kernel Fuzzy c-Means. Journal of Advanced Computational Intelligence and Intelligent Informatics 15(1), 90-94 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  24. Ichihashi, H., Honda, K., Tani, N.: Gaussian Mixture PDF Approximation and Fuzzy c-Means Clustering with Entropy Regularization. In: Proc. of Fourth Asian Fuzzy Systems Symposium, vol. 1, pp. 217-221 (2000).Google ScholarGoogle Scholar
  25. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990).Google ScholarGoogle Scholar
  26. Klein, D., Kamvar, S.D., Manning, C.: From Instance-level Constraints to Spacelevel Constraints: Making the Most of Prior Knowledge in Data Clustering. In: Proc. of the Intern. Conf. on Machine Learning, Sydney, Australia, pp. 307-314 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Krishnapuram, R., Keller, J.M.: A Possibilistic Approach to Clustering. IEEE Trans. on Fuzzy Systems 1, 98-110 (1993).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised Graph Clustering: A Kernel Approach. Mach. Learn. 74, 1-22 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Li, R.P., Mukaidono, M.: A Maximum Entropy Approach to Fuzzy Clustering. In: Proc. of the 4th IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE/IFES 1995), Yokohama, Japan, March 20-24, pp. 2227-2232 (1995).Google ScholarGoogle Scholar
  31. Li, R.P., Mukaidono, M.: Gaussian Clustering Method Based on Maximum-fuzzyentropy Interpretation. Fuzzy Sets and Systems 102, 253-258 (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. MacQueen, J.B.: Some Methods of Classification and Analysis of Multivariate Observations. In: Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281-297 (1967).Google ScholarGoogle Scholar
  33. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)Google ScholarGoogle Scholar
  34. Miyamoto, S.: Fuzzy Sets in Information Retrieval and Cluster Analysis. Kluwer, Dordrecht (1990).Google ScholarGoogle Scholar
  35. Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a Regularization and Maximum Entropy Approach. In: Proc. of the 7th International Fuzzy Systems Association World Congress (IFSA 1997), Prague, Czech, June 25-30, vol. II, pp. 86-92 (1997)Google ScholarGoogle Scholar
  36. Miyamoto, S.: Introduction to Cluster Analysis, Morikita-Shuppan, Tokyo (1999) (in Japanese)Google ScholarGoogle Scholar
  37. Miyamoto, S., Nakayama, Y.: Algorithms of Hard c-means Clustering Using Kernel Functions in Support Vector Machines. Journal of Advanced Computational Intelligence and Intelligent Informatics 7(1), 19-24 (2003)Google ScholarGoogle ScholarCross RefCross Ref
  38. Miyamoto, S., Suizu, D.: Fuzzy c-means Clustering Using Kernel Functions in Support Vector Machines. Journal of Advanced Computational Intelligence and Intelligent Informatics 7(1), 25-30 (2003)Google ScholarGoogle ScholarCross RefCross Ref
  39. Miyamoto, S., Suizu, D., Takata, O.: Methods of Fuzzy c-means and Possibilistic Clustering Using a Quadratic Term. Scientiae Mathematicae Japonicae 60(2), 217- 233 (2004)Google ScholarGoogle Scholar
  40. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer, Heidelberg (2008) Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Miyamoto, S., Terami, A.: Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints. In: Proc. of WCCI 2010 IEEE World Congress on Computational Intelligence, CCIB, Barcelona, Spain, July 18-23, pp. 2796-2801 (2010)Google ScholarGoogle Scholar
  42. Miyamoto, S., Terami, A.: Constrained Agglomerative Hierarchical Clustering Algorithms with Penalties. In: Proc. of 2011 IEEE International Conference on Fuzzy Systems, Taipei, Taiwan, June 27-30, pp. 422-427 (2011)Google ScholarGoogle Scholar
  43. Redner, R.A., Walker, H.F.: Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review 26(2), 195-239 (1984)Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)Google ScholarGoogle Scholar
  45. Schönberg, I.J.: Metric Spaces and Completely Monotone Functions. Annals of Mathematics 39(4), 811-841 (1938)Google ScholarGoogle Scholar
  46. Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian Mixture Models with EM Using Equivalence Constraints. In: Advances in Neural Information Processing Systems, vol. 16 (2004)Google ScholarGoogle Scholar
  47. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)Google ScholarGoogle Scholar
  48. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000) Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Vapnik, V.N.: Transductive Inference and Semi-supervised Learning. In: Chapelle, O., et al. (eds.) Semi-Supervised Learning, pp. 453-472. MIT Press, Cambridge (2006)Google ScholarGoogle Scholar
  50. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means Clustering with Background Knowledge. In: Proc. of the 9th ICML, pp. 577-584 (2001) Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wang, N., Li, X., Luo, X.: Semi-supervised Kernel-based Fuzzy c-Means with Pairwise Constraints. In: Proc. of WCCI 2008, pp. 1099-1103 (2008)Google ScholarGoogle ScholarCross RefCross Ref
  52. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Morgan and Claypool (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics