ABSTRACT
The two classes of agglomerative hierarchical clustering algorithms and K-means algorithms are overviewed. Moreover recent topics of kernel functions and semi-supervised clustering in the two classes are discussed. This paper reviews traditional methods as well as new techniques.
- Akaike, H.: A Bayesian Analysis of the Minimum AIC Procedure. Annals of the Institute of Statistical Mathematics 30(1), 9-14 (1978).Google Scholar
Cross Ref
- Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New York (1973).Google Scholar
- Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic Framework for Semi-Supervised Clustering. In: Proc. of the Tenth ACM SIGKDD (KDD 2004), pp. 59-68 (2004). Google Scholar
Digital Library
- Basu, S., Banerjee, A., Mooney, R.J.: Active Semi-Supervision for Pairwise Constrained Clustering. In: Proc. of the SIAM International Conference on Data Mining (SDM 2004), pp. 333-344 (2004).Google Scholar
Cross Ref
- Basu, S., Davidson, I., Wagstaff, K.L. (eds.): Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC, Boca Raton (2009). Google Scholar
Digital Library
- Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981). Google Scholar
Digital Library
- Bezdek, J.C., Keller, J., Krishnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston (1999). Google Scholar
Digital Library
- Bouchachia, A., Pedrycz, W.: A Semi-supervised Clustering Algorithm for Data Exploration. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS (LNAI), vol. 2715, pp. 328-337. Springer, Heidelberg (2003). Google Scholar
Digital Library
- Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006). Google Scholar
Digital Library
- Davé, R.N., Krishnapuram, R.: Robust Clustering Methods: A Unified View. IEEE Trans. on Fuzzy Systems 5(2), 270-293 (1997). Google Scholar
Digital Library
- Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. B39, 1-38 (1977).Google Scholar
- Dumitrescu, D., Lazzerini, B., Jain, L.C.: Fuzzy Sets and Their Application to Clustering and Training. CRC Press, Boca Raton (2000). Google Scholar
Digital Library
- Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons (1973).Google Scholar
- Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001). Google Scholar
Digital Library
- Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-separated Clusters. J. of Cybernetics 3, 32-57 (1974).Google Scholar
- Dunn, J.C.: Well-separated Clusters and Optimal Fuzzy Partitions. J. of Cybernetics 4, 95-104 (1974).Google Scholar
- Endo, Y., Haruyama, H., Okubo, T.: On Some Hierarchical Clustering Algorithms Using Kernel Functions. In: Proc. of FUZZ-IEEE 2004, CD-ROM Proc., Budapest, Hungary, July 25-29, pp. 1-6 (2004).Google Scholar
- Everitt, B.S.: Cluster Analysis, 3rd edn. Arnold, London (1993).Google Scholar
- Girolami, M.: Mercer Kernel Based Clustering in Feature Space. IEEE Trans. on Neural Networks 13(3), 780-784 (2002). Google Scholar
Digital Library
- Hashimoto, W., Nakamura, T., Miyamoto, S.: Comparison and Evaluation of Different Cluster Validity Measures Including Their Kernelization. Journal of Advanced Computational Intelligence and Intelligent Informatics 13(3), 204-209 (2009).Google Scholar
Cross Ref
- Hathaway, R.J., Bezdek, J.C.: Switching Regression Models and Fuzzy Clustering. IEEE Trans. on Fuzzy Systems 1, 195-204 (1993).Google Scholar
Digital Library
- Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999).Google Scholar
- Hwang, J., Miyamoto, S.: Kernel Functions Derived from Fuzzy Clustering and Their Application to Kernel Fuzzy c-Means. Journal of Advanced Computational Intelligence and Intelligent Informatics 15(1), 90-94 (2011).Google Scholar
Cross Ref
- Ichihashi, H., Honda, K., Tani, N.: Gaussian Mixture PDF Approximation and Fuzzy c-Means Clustering with Entropy Regularization. In: Proc. of Fourth Asian Fuzzy Systems Symposium, vol. 1, pp. 217-221 (2000).Google Scholar
- Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990).Google Scholar
- Klein, D., Kamvar, S.D., Manning, C.: From Instance-level Constraints to Spacelevel Constraints: Making the Most of Prior Knowledge in Data Clustering. In: Proc. of the Intern. Conf. on Machine Learning, Sydney, Australia, pp. 307-314 (2002). Google Scholar
Digital Library
- Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997). Google Scholar
Digital Library
- Krishnapuram, R., Keller, J.M.: A Possibilistic Approach to Clustering. IEEE Trans. on Fuzzy Systems 1, 98-110 (1993).Google Scholar
Digital Library
- Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised Graph Clustering: A Kernel Approach. Mach. Learn. 74, 1-22 (2009). Google Scholar
Digital Library
- Li, R.P., Mukaidono, M.: A Maximum Entropy Approach to Fuzzy Clustering. In: Proc. of the 4th IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE/IFES 1995), Yokohama, Japan, March 20-24, pp. 2227-2232 (1995).Google Scholar
- Li, R.P., Mukaidono, M.: Gaussian Clustering Method Based on Maximum-fuzzyentropy Interpretation. Fuzzy Sets and Systems 102, 253-258 (1999). Google Scholar
Digital Library
- MacQueen, J.B.: Some Methods of Classification and Analysis of Multivariate Observations. In: Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281-297 (1967).Google Scholar
- McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)Google Scholar
- Miyamoto, S.: Fuzzy Sets in Information Retrieval and Cluster Analysis. Kluwer, Dordrecht (1990).Google Scholar
- Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a Regularization and Maximum Entropy Approach. In: Proc. of the 7th International Fuzzy Systems Association World Congress (IFSA 1997), Prague, Czech, June 25-30, vol. II, pp. 86-92 (1997)Google Scholar
- Miyamoto, S.: Introduction to Cluster Analysis, Morikita-Shuppan, Tokyo (1999) (in Japanese)Google Scholar
- Miyamoto, S., Nakayama, Y.: Algorithms of Hard c-means Clustering Using Kernel Functions in Support Vector Machines. Journal of Advanced Computational Intelligence and Intelligent Informatics 7(1), 19-24 (2003)Google Scholar
Cross Ref
- Miyamoto, S., Suizu, D.: Fuzzy c-means Clustering Using Kernel Functions in Support Vector Machines. Journal of Advanced Computational Intelligence and Intelligent Informatics 7(1), 25-30 (2003)Google Scholar
Cross Ref
- Miyamoto, S., Suizu, D., Takata, O.: Methods of Fuzzy c-means and Possibilistic Clustering Using a Quadratic Term. Scientiae Mathematicae Japonicae 60(2), 217- 233 (2004)Google Scholar
- Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer, Heidelberg (2008) Google Scholar
Digital Library
- Miyamoto, S., Terami, A.: Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints. In: Proc. of WCCI 2010 IEEE World Congress on Computational Intelligence, CCIB, Barcelona, Spain, July 18-23, pp. 2796-2801 (2010)Google Scholar
- Miyamoto, S., Terami, A.: Constrained Agglomerative Hierarchical Clustering Algorithms with Penalties. In: Proc. of 2011 IEEE International Conference on Fuzzy Systems, Taipei, Taiwan, June 27-30, pp. 422-427 (2011)Google Scholar
- Redner, R.A., Walker, H.F.: Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review 26(2), 195-239 (1984)Google Scholar
Digital Library
- Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)Google Scholar
- Schönberg, I.J.: Metric Spaces and Completely Monotone Functions. Annals of Mathematics 39(4), 811-841 (1938)Google Scholar
- Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian Mixture Models with EM Using Equivalence Constraints. In: Advances in Neural Information Processing Systems, vol. 16 (2004)Google Scholar
- Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)Google Scholar
- Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000) Google Scholar
Digital Library
- Vapnik, V.N.: Transductive Inference and Semi-supervised Learning. In: Chapelle, O., et al. (eds.) Semi-Supervised Learning, pp. 453-472. MIT Press, Cambridge (2006)Google Scholar
- Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means Clustering with Background Knowledge. In: Proc. of the 9th ICML, pp. 577-584 (2001) Google Scholar
Digital Library
- Wang, N., Li, X., Luo, X.: Semi-supervised Kernel-based Fuzzy c-Means with Pairwise Constraints. In: Proc. of WCCI 2008, pp. 1099-1103 (2008)Google Scholar
Cross Ref
- Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Morgan and Claypool (2009). Google Scholar
Digital Library
Recommendations
Robust Speaker Clustering Using Affinity Propagation
In this letter, a recently proposed clustering algorithm named affinity propagation is introduced for the task of speaker clustering. This novel algorithm exhibits fast execution speed and finds clusters with low error. However, experiments show that ...
An efficient hybrid clustering algorithm for molecular sequences classification
ACM-SE 44: Proceedings of the 44th annual Southeast regional conferenceThe k-means clustering and hierarchical agglomerative clustering algorithms are two popular methods to partition data into groups. The k-means clustering algorithm heavily favors spherical clusters and does not deal with noise adequately. To overcome ...
RK-Means Clustering: K-Means with Reliability
This paper presents an RK-means clustering algorithm which is developed for reliable data grouping by introducing a new reliability evaluation to the K-means clustering algorithm. The conventional K-means clustering algorithm has two shortfalls: 1) the ...




Comments