Abstract
Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem. In this work, we take the first steps towards automating this process by focusing on an important subclass of videos containing a single dominant foreground object. Our technique makes two novel contributions over previous work: first, we propose a correspondence-based similarity metric to automatically identify a good transition point in the video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique that aligns both the foreground and background about this transition point using a combination of global camera path planning and patch-based video morphing. We demonstrate that this allows us to create natural, compelling, loopy videos from a wide range of videos collected from the internet.
- <label>{APS*14}</label> Arev I., Park H.S., Sheikh Y., Hodgins J., Shamir A.: Automatic editing of footage from multiple social cameras. ACM Trans. on Graph. Proc. SIGGRAPH Volume 33, Issue 4 July 2014, pp.81:1-81:11. 9 Google Scholar
Digital Library
- <label>{AZP*05}</label> Agarwala A., Zheng K.C., Pal C., Agrawala M., Cohen M., Curless B., Salesin D., Szeliski R.: Panoramic video textures. ACM Trans. on Graph. Proc. SIG-GRAPH Volume 24, Issue 3 July 2005, pp.821-827. 2 Google Scholar
Digital Library
- <label>{BAAR12}</label> Bai J., Agarwala A., Agrawala M., Ramamoorthi R.: Selectively de-animating video. ACM Trans. on Graph. Proc. SIGGRAPH Volume 31, Issue 4 July 2012, pp.66:1-66:10. 2 Google Scholar
Digital Library
- <label>{BBPP10}</label> Ballan L., Brostow G.J., Puwein J., Pollefeys M.: Unstructured video-based rendering: Interactive exploration of casually captured videos. ACM Trans. on Graph. Proc. SIGGRAPH Volume 29, Issue 4 July 2010, pp.87:1-87:11. 9 Google Scholar
Digital Library
- <label>{BLA12}</label> Berthouzoz F., Li W., Agrawala M.: Tools for placing cuts and transitions in interview video. ACM Trans. Graph. Volume 31, Issue 4 July 2012, pp.67:1-67:8. 2, 9 Google Scholar
Digital Library
- <label>{Car}</label> CARRÉ L. :. URL: "http://lillicarre.tumblr.com/". 1Google Scholar
- <label>{DCWS03}</label> Doretto G., Chiuso A., Wu Y., Soatto S.: Dynamic textures. IJCV Volume 51, Issue 2 2003, pp.91-109. 2 Google Scholar
Digital Library
- <label>{FS11}</label> Freeman J., Simoncelli E.P.: Metamers of the ventral stream. Nature neuroscience Volume 14, Issue 9 2011, pp.1195-1201. 1Google Scholar
- <label>{Gol07}</label> Goldman D.R.: A framework for video annotation, visualization, and interaction. PhD thesis, University of Washington, 2007. 2Google Scholar
- <label>{Gom99}</label> Gomes J.: Warping and Morphing of Graphical Objects. Morgan Kaufmann, 1999. 2Google Scholar
- <label>{HSGL11}</label> HaCohen Y., Shechtman E., Goldman D.B., Lischinski D.: Non-rigid dense correspondence with applications for image enhancement. ACM Trans. on Graph. Proc. SIGGRAPH Volume 30, Issue 4 2011, pp.70:1-70:9. 2, 4, 8 Google Scholar
Digital Library
- <label>{Inc}</label> Inci E. :. URL: "http://erdalinci.tumblr.com/". 1Google Scholar
- <label>{JMD*12}</label> Joshi N., Mehta S., Drucker S., Stollnitz E., Hoppe H., Uyttendaele M., Cohen M.: Cliplets: Juxtaposing still and dynamic imagery</otherTitle>. In <otherTitle>Proc. UIST 2012, pp. pp.251-260. 2 Google Scholar
Digital Library
- <label>{KSE*03}</label> Kwatra V., Schödl A., Essa I., Turk G., Bobick A.: Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. on Graph. Proc. SIGGRAPH Volume 22, Issue 3 July 2003, pp.277-286. 2 Google Scholar
Digital Library
- <label>{KSSGS11}</label> Kemelmacher-Shlizerman I., Shechtman E., Garg R., Seitz S.M.: Exploring photobios. ACM Trans. on Graph. Proc. SIGGRAPH Volume 30, Issue 4 July 2011, pp.61:1-61:10. 2 Google Scholar
Digital Library
- <label>{LJH13}</label> Liao Z., Joshi N., Hoppe H.: Automated video looping with progressive dynamism. ACM Trans. on Graph. Proc. SIGGRAPH Volume 32, Issue 4 July 2013, pp.77:1-77:10. 2, 3 Google Scholar
Digital Library
- <label>{LLN*14}</label> Liao J., Lima R.S., Nehab D., Hoppe H., Sander P.V.: Semi-automated video morphing. Comp. Graph. Forum Proc. EGSR Volume 33, Issue 4 2014, pp.51-60. 2 Google Scholar
Digital Library
- <label>{LTK12}</label> Levieux P., Tompkin J., Kautz J.: Interactive viewpoint video textures</otherTitle>. In <otherTitle>Proc. CVMP December 2012. 3 Google Scholar
Digital Library
- <label>{PF13}</label> Papazoglou A., Ferrari V.: Fast object segmentation in unconstrained video</otherTitle>. <otherTitle>ICCV 2013. 3, 8Google Scholar
- <label>{Raj}</label> Rajkovic M. :. URL: "http://milosrajk.ovic.tumblr.com/". 1Google Scholar
- <label>{RKB04}</label> Rother C., Kolmogorov V., Blake A.: GrabCut: Interactive foreground extraction using iterated graph cuts</otherTitle>. In <otherTitle>ACM Trans. on Graph. Proc. SIGGRAPH 2004, pp. pp.309-314. 3 Google Scholar
Digital Library
- <label>{RWSG13}</label> Rãijegg J., Wang O., Smolic A., Gross M.: Ducttake: Spatiotemporal video compositing. Comp. Graph. Forum Volume 32, Issue 2pt1 2013, pp.51-61. 2Google Scholar
- <label>{SRAIS10}</label> Shechtman E., Rav-Acha A., Irani M., Seitz S.M.: Regenerative morphing</otherTitle>. In <otherTitle>CVPR 2010, pp. pp.615-622. 2, 6Google Scholar
- <label>{SRDB10}</label> Sun D., Roth S., Darmstadt T., Black M.: Secrets of optical Flow Estimation and Their Principles</otherTitle>. <otherTitle>CVPR 2010.Google Scholar
- <label>{SSSE00}</label> Schödl A., Szeliski R., Salesin D.H., Essa I.: Video Textures</otherTitle>. In <otherTitle>ACM Trans. on Graph. Proc. SIGGRAPH 2000, pp. pp.489-498. 1, 2, 3, 4, 5 Google Scholar
Digital Library
- <label>{TPSK11}</label> Tompkin J., Pece F., Subr K., Kautz J.: Towards moment images: Automatic cinemagraphs</otherTitle>. In <otherTitle>Proc. CVMP November 2011, pp. pp.87-93. 2 Google Scholar
Digital Library
- <label>{Vin14}</label> Vine statistics, Aug 2014. URL: "http://blog.vine.co/post/95288683756/new-vine-camera-shoot-import-edit-and-share". 1Google Scholar
- <label>{ZCA*09}</label> Zheng K.C., Colburn A., Agarwala A., Agrawala M., Curless B., Salesin D., Cohen M.: Parallax photography: Creating 3D cinematic effects from stills. In Graph. Interface 2009 May 2009. 2Google Scholar
Recommendations
An unconstrained smooth minimization reformulation of the second-order cone complementarity problem
A popular approach to solving the nonlinear complementarity problem (NCP) is to reformulate it as the global minimization of a certain merit function over źn. A popular choice of the merit function is the squared norm of the Fischer-Burmeister function, ...
A quasi-Newton method for unconstrained non-smooth problems
We present a method, based on a variational problem, for solving a non-smooth unconstrained optimization problem. We assume that the objective function is a Lipschitz continuous and a regular function. In this case the function of our variational ...
Convergence Rate of Gradient-Concordant Methods for Smooth Unconstrained Optimization
Optimization and ApplicationsAbstractThe article discusses the class of gradient-concordant numerical methods for smooth unconstrained minimization where the descent direction is restricted to a subset of the descent cone. This class covers a wide range of well-known optimization ...




Comments