skip to main content
10.5555/3026877.3026899acmotherconferencesArticle/Chapter ViewAbstractPublication PagesosdiConference Proceedingsconference-collections
Article

TensorFlow: a system for large-scale machine learning

Published:02 November 2016Publication History

ABSTRACT

TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

References

  1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint, 1603.04467, 2016. arxiv.org/abs/1603.04467. Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.- L. Carrier, K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, E. Simon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang. Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint, 1605.02688, 2016. arxiv.org/abs/1605.02688.Google ScholarGoogle Scholar
  3. A. Angelova, A. Krizhevsky, and V. Vanhoucke. Pedestrian detection with a large-field-of-view deep network. In Proceedings of ICRA, pages 704-711. IEEE, 2015. www.vision.caltech.edu/anelia/publications/Angelova15LFOV.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  4. Arvind and D. E. Culler. Dataflow architectures. In Annual Review of Computer Science Vol. 1, 1986, pages 225-253. Annual Reviews Inc., 1986. www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv preprint, 1412.7755, 2014. arxiv.org/abs/1412.7755.Google ScholarGoogle Scholar
  6. Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of Machine Learning Research, 3:1137-1155, 2003. jmlr.org/papers/volume3/bengio03a/bengio03a.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Brants and A. Franz. Web 1T 5-gram version 1, 2006. catalog.ldc.upenn.edu/LDC2006T13.Google ScholarGoogle Scholar
  8. R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample size selection in optimization methods for machine learning. Mathematical Programming, 134(1):127-155, 2012. dx.doi.org/10.1007/s10107-012-0572-5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, and P. Koehn. One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint, 1312.3005, 2013. arxiv.org/abs/1312.3005.Google ScholarGoogle Scholar
  10. J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed synchronous SGD. In Proceedings of ICLR Workshop Track, 2016. arxiv.org/abs/1604.00981.Google ScholarGoogle Scholar
  11. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. In Proceedings of LearningSys, 2015. www.cs.cmu.edu/~muli/file/mxnet-learning-sys.pdf.Google ScholarGoogle Scholar
  12. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah. Wide & deep learning for recommender systems. arXiv preprint, 1606.07792, 2016. arxiv.org/abs/1606.07792.Google ScholarGoogle Scholar
  13. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv preprint, 1410.0759, 2014. arxiv.org/abs/1410.0759.Google ScholarGoogle Scholar
  14. T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning training system. In Proceedings of OSDI, pages 571-582, 2014. www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Chintala. convnet-benchmarks, 2016. github.com/soumith/convnet-benchmarks.Google ScholarGoogle Scholar
  16. E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big data on little clients. In Proceedings of ISCA, pages 261-272, 2013. www.microsoft.com/enus/research/wp-content/uploads/2013/06/ISCA13_-linqits.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Collobert, S. Bengio, and J. Mariéthoz. Torch: A modular machine learning software library. Technical report, IDIAP, 2002. infoscience.epfl.ch/record/82802/files/rr02-46.pdf.Google ScholarGoogle Scholar
  18. H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In Proceedings of EuroSys, 2016. www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Dai, C. Olah, and Q. V. Le. Document embedding with paragraph vectors. arXiv preprint, 1507.07998, 2015. arxiv.org/abs/1507.07998.Google ScholarGoogle Scholar
  20. J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Proceedings of NIPS, pages 1232-1240, 2012. research.google.com/archive/large_deep_networks_nips2012.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceedings of OSDI, pages 137-149, 2004. research.google.com/archive/mapreduceosdi04.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. DMLC. MXNet for deep learning, 2016. github.com/dmlc/mxnet.Google ScholarGoogle Scholar
  23. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011. jmlr.org/papers/volume12/duchi11a/duchi11a.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. DeVISE: A deep visual-semantic embedding model. In Proceedings of NIPS, pages 2121-2129, 2013. research.google.com/pubs/archive/41473.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Gonzalez-Dominguez, I. Lopez-Moreno, P. J. Moreno, and J. Gonzalez-Rodriguez. Frame-by-frame language identification in short utterances using deep neural networks. Neural Networks, 64:49-58, 2015. research.google.com/pubs/archive/42929.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of NIPS, pages 2672- 2680, 2014. papers.nips.cc/paper/5423-generative-adversarial-nets.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Google Research. Tensorflow serving, 2016. tensorflow.github.io/serving/.Google ScholarGoogle Scholar
  28. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of CVPR, pages 770-778, 2016. arxiv.org/abs/1512.03385.Google ScholarGoogle ScholarCross RefCross Ref
  29. G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and J. Dean. Multilingual acoustic models using distributed deep neural networks. In Proceedings of ICASSP, pages 8619-8623, 2013. research.google.com/pubs/archive/40807.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  30. G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pages 1-12, 1986. www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_-sp13/Readings/hinton86.pdf.Google ScholarGoogle Scholar
  31. G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag., 29(6):82- 97, 2012. www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  32. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997. deeplearning.cs.cmu.edu/pdfs/Hochreiter97_-lstm.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of ICML, pages 448-456, 2015. jmlr.org/proceedings/papers/v37/ioffe15.pdf.Google ScholarGoogle Scholar
  34. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. In Proceedings of EuroSys, pages 59-72, 2007. www.microsoft.com/en-us/research/wpcontent/uploads/2007/03/eurosys07.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. B. Jacob et al. gemmlowp: a small self-contained low-precision GEMM library, 2015. github.com/google/gemmlowp.Google ScholarGoogle Scholar
  36. B. Jacob, G. Guennebaud, et al. Eigen library for linear algebra. eigen.tuxfamily.org.Google ScholarGoogle Scholar
  37. S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural machine translation. In Proceedings of ACL-ICJNLP, pages 1-10, July 2015. www.aclweb.org/anthology/P15-1001.Google ScholarGoogle ScholarCross RefCross Ref
  38. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of ACM Multimedia, pages 675-678, 2014. arxiv.org/abs/1408.5093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. I. Jordan. Serial order: A parallel distributed processing approach. ICS report 8608, Institute for Cognitive Science, UCSD, La Jolla, 1986. cseweb.ucsd.edu/~gary/PAPERSUGGESTIONS/Jordan-TR-8604.pdf.Google ScholarGoogle Scholar
  40. N. Jouppi. Google supercharges machine learning tasks with TPU custom chip, 2016. cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-customchip.html.Google ScholarGoogle Scholar
  41. R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language modeling. arXiv preprint, 1602.02410, 2016. arxiv.org/abs/1602.02410.Google ScholarGoogle Scholar
  42. A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of CVPR, pages 1725-1732, 2014. research.google.com/pubs/archive/42455.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint, 1404.5997, 2014. arxiv.org/abs/1404.5997.Google ScholarGoogle Scholar
  44. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of NIPS, pages 1106-1114, 2012. papers.nips.cc/paper/4824- imagenet-classification-with-deep-convolutional-neural-networks.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep neural networks. Journal of Machine Learning Research, 10:1-40, 2009. jmlr.org/papers/volume10/larochelle09a/larochelle09a.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Lavin and S. Gray. Fast algorithms for convolutional neural networks. In Proceedings of CVPR, pages 4013-4021, 2016. arxiv.org/abs/1509.09308.Google ScholarGoogle ScholarCross RefCross Ref
  47. Q. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng. Building high-level features using large scale unsupervised learning. In Proceedings of ICML, pages 81-88, 2012. research.google.com/archive/unsupervised_-icml2012.pdf.Google ScholarGoogle Scholar
  48. Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits, 1998. yann.lecun.com/exdb/mnist/.Google ScholarGoogle Scholar
  49. M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the Parameter Server. In Proceedings of OSDI, pages 583-598, 2014. www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go using deep convolutional neural networks. arXiv preprint, 1412.6564, 2014. arxiv.org/abs/1412.6564.Google ScholarGoogle Scholar
  51. F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In Proceedings of HotOS, HOTOS'15, 2015. www.usenix.org/system/files/conference/hotos15/ hotos15-paper-mcsherry.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. In Proceedings of ICLR Workshops Track, 2013. arxiv.org/abs/1301.3781.Google ScholarGoogle Scholar
  53. V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Proceedings of NIPS, pages 2204-2212, 2014. papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 02 2015. dx.doi.org/10.1038/nature14236.Google ScholarGoogle Scholar
  55. P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. SparkNet: Training deep networks in Spark. In Proceedings of ICLR, 2016. arxiv.org/abs/1511.06051.Google ScholarGoogle Scholar
  56. D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and M. Abadi. Incremental, iterative data processing with timely dataflow. Commun. ACM, 59(10):75-83, Sept. 2016. dl.acm.org/citation.cfm?id=2983551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint, 1507.04296, 2015. arxiv.org/abs/1507.04296.Google ScholarGoogle Scholar
  58. Nervana Systems. Neon deep learning framework, 2016. github.com/NervanaSystems/neon.Google ScholarGoogle Scholar
  59. NVIDIA Corporation. NCCL: Optimized primitives for collective multi-GPU communication, 2016. github.com/NVIDIA/nccl.Google ScholarGoogle Scholar
  60. R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In Proceedings of ICML, pages 1310-1318, 2013. jmlr.org/proceedings/papers/v28/pascanu13.pdf.Google ScholarGoogle Scholar
  61. B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Proceedings of NIPS, pages 693-701, 2011. papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: a compiler and runtime for heterogeneous systems. In Proceedings of SOSP, pages 49-68, 2013. sigops.org/sosp/sosp13/papers/p49-rossbach.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. In Cognitive modeling, volume 5, pages 213-220. MIT Press, 1988. www.cs.toronto.edu/~hinton/absps/naturebp.pdf.Google ScholarGoogle Scholar
  64. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3):211-252, 2015. arxiv.org/abs/1409.0575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc. VLDB Endow., 3(1-2):703-710, Sept. 2010. vldb.org/pvldb/vldb2010/papers/R63.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization and momentum in deep learning. In Proceedings of ICML, pages 1139-1147, 2013. jmlr.org/proceedings/papers/v28/sutskever13.pdf.Google ScholarGoogle Scholar
  67. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Proceedings of NIPS, pages 3104- 3112, 2014. papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of CVPR, pages 1-9, 2015. arxiv.org/abs/1409.4842.Google ScholarGoogle ScholarCross RefCross Ref
  69. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. arXiv preprint, 1512.00567, 2015. arxiv.org/abs/1512.00567.Google ScholarGoogle Scholar
  70. C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. Map-reduce for machine learning on multicore. In Proceedings of NIPS, pages 281-288, 2007. papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of EuroSys, 2015. research.google.com/pubs/archive/43438.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar as a foreign language. arXiv preprint, 2014. arxiv.org/abs/1412.7449.Google ScholarGoogle Scholar
  73. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google's Neural Machine Translation system: Bridging the gap between human and machine translation. arXiv preprint, 1609.08144, 2016. arxiv.org/abs/1609.08144.Google ScholarGoogle Scholar
  74. Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language. In Proceedings of OSDI, pages 1-14, 2008. www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of NSDI, pages 15-28, 2012. https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech processing. In Proceedings of ICASSP, pages 3517-3521, 2013. research.google.com/pubs/archive/40811.pdf.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. TensorFlow: a system for large-scale machine learning
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation
      November 2016
      786 pages
      ISBN:9781931971331

      Publisher

      USENIX Association

      United States

      Publication History

      • Published: 2 November 2016

      Check for updates

      Qualifiers

      • Article