ABSTRACT
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint, 1603.04467, 2016. arxiv.org/abs/1603.04467. Software available from tensorflow.org.Google Scholar
- R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.- L. Carrier, K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, E. Simon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang. Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint, 1605.02688, 2016. arxiv.org/abs/1605.02688.Google Scholar
- A. Angelova, A. Krizhevsky, and V. Vanhoucke. Pedestrian detection with a large-field-of-view deep network. In Proceedings of ICRA, pages 704-711. IEEE, 2015. www.vision.caltech.edu/anelia/publications/Angelova15LFOV.pdf.Google Scholar
Cross Ref
- Arvind and D. E. Culler. Dataflow architectures. In Annual Review of Computer Science Vol. 1, 1986, pages 225-253. Annual Reviews Inc., 1986. www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235. Google Scholar
Digital Library
- J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv preprint, 1412.7755, 2014. arxiv.org/abs/1412.7755.Google Scholar
- Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of Machine Learning Research, 3:1137-1155, 2003. jmlr.org/papers/volume3/bengio03a/bengio03a.pdf. Google Scholar
Digital Library
- T. Brants and A. Franz. Web 1T 5-gram version 1, 2006. catalog.ldc.upenn.edu/LDC2006T13.Google Scholar
- R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample size selection in optimization methods for machine learning. Mathematical Programming, 134(1):127-155, 2012. dx.doi.org/10.1007/s10107-012-0572-5. Google Scholar
Digital Library
- C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, and P. Koehn. One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint, 1312.3005, 2013. arxiv.org/abs/1312.3005.Google Scholar
- J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed synchronous SGD. In Proceedings of ICLR Workshop Track, 2016. arxiv.org/abs/1604.00981.Google Scholar
- T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. In Proceedings of LearningSys, 2015. www.cs.cmu.edu/~muli/file/mxnet-learning-sys.pdf.Google Scholar
- H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah. Wide & deep learning for recommender systems. arXiv preprint, 1606.07792, 2016. arxiv.org/abs/1606.07792.Google Scholar
- S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv preprint, 1410.0759, 2014. arxiv.org/abs/1410.0759.Google Scholar
- T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning training system. In Proceedings of OSDI, pages 571-582, 2014. www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf. Google Scholar
Digital Library
- S. Chintala. convnet-benchmarks, 2016. github.com/soumith/convnet-benchmarks.Google Scholar
- E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big data on little clients. In Proceedings of ISCA, pages 261-272, 2013. www.microsoft.com/enus/research/wp-content/uploads/2013/06/ISCA13_-linqits.pdf. Google Scholar
Digital Library
- R. Collobert, S. Bengio, and J. Mariéthoz. Torch: A modular machine learning software library. Technical report, IDIAP, 2002. infoscience.epfl.ch/record/82802/files/rr02-46.pdf.Google Scholar
- H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In Proceedings of EuroSys, 2016. www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf. Google Scholar
Digital Library
- A. Dai, C. Olah, and Q. V. Le. Document embedding with paragraph vectors. arXiv preprint, 1507.07998, 2015. arxiv.org/abs/1507.07998.Google Scholar
- J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Proceedings of NIPS, pages 1232-1240, 2012. research.google.com/archive/large_deep_networks_nips2012.pdf. Google Scholar
Digital Library
- J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceedings of OSDI, pages 137-149, 2004. research.google.com/archive/mapreduceosdi04.pdf. Google Scholar
Digital Library
- DMLC. MXNet for deep learning, 2016. github.com/dmlc/mxnet.Google Scholar
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011. jmlr.org/papers/volume12/duchi11a/duchi11a.pdf. Google Scholar
Digital Library
- A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. DeVISE: A deep visual-semantic embedding model. In Proceedings of NIPS, pages 2121-2129, 2013. research.google.com/pubs/archive/41473.pdf. Google Scholar
Digital Library
- J. Gonzalez-Dominguez, I. Lopez-Moreno, P. J. Moreno, and J. Gonzalez-Rodriguez. Frame-by-frame language identification in short utterances using deep neural networks. Neural Networks, 64:49-58, 2015. research.google.com/pubs/archive/42929.pdf. Google Scholar
Digital Library
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of NIPS, pages 2672- 2680, 2014. papers.nips.cc/paper/5423-generative-adversarial-nets.pdf. Google Scholar
Digital Library
- Google Research. Tensorflow serving, 2016. tensorflow.github.io/serving/.Google Scholar
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of CVPR, pages 770-778, 2016. arxiv.org/abs/1512.03385.Google Scholar
Cross Ref
- G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and J. Dean. Multilingual acoustic models using distributed deep neural networks. In Proceedings of ICASSP, pages 8619-8623, 2013. research.google.com/pubs/archive/40807.pdf.Google Scholar
Cross Ref
- G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pages 1-12, 1986. www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_-sp13/Readings/hinton86.pdf.Google Scholar
- G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag., 29(6):82- 97, 2012. www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf.Google Scholar
Cross Ref
- S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997. deeplearning.cs.cmu.edu/pdfs/Hochreiter97_-lstm.pdf. Google Scholar
Digital Library
- S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of ICML, pages 448-456, 2015. jmlr.org/proceedings/papers/v37/ioffe15.pdf.Google Scholar
- M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. In Proceedings of EuroSys, pages 59-72, 2007. www.microsoft.com/en-us/research/wpcontent/uploads/2007/03/eurosys07.pdf. Google Scholar
Digital Library
- B. Jacob et al. gemmlowp: a small self-contained low-precision GEMM library, 2015. github.com/google/gemmlowp.Google Scholar
- B. Jacob, G. Guennebaud, et al. Eigen library for linear algebra. eigen.tuxfamily.org.Google Scholar
- S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural machine translation. In Proceedings of ACL-ICJNLP, pages 1-10, July 2015. www.aclweb.org/anthology/P15-1001.Google Scholar
Cross Ref
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of ACM Multimedia, pages 675-678, 2014. arxiv.org/abs/1408.5093. Google Scholar
Digital Library
- M. I. Jordan. Serial order: A parallel distributed processing approach. ICS report 8608, Institute for Cognitive Science, UCSD, La Jolla, 1986. cseweb.ucsd.edu/~gary/PAPERSUGGESTIONS/Jordan-TR-8604.pdf.Google Scholar
- N. Jouppi. Google supercharges machine learning tasks with TPU custom chip, 2016. cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-customchip.html.Google Scholar
- R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language modeling. arXiv preprint, 1602.02410, 2016. arxiv.org/abs/1602.02410.Google Scholar
- A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of CVPR, pages 1725-1732, 2014. research.google.com/pubs/archive/42455.pdf. Google Scholar
Digital Library
- A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint, 1404.5997, 2014. arxiv.org/abs/1404.5997.Google Scholar
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of NIPS, pages 1106-1114, 2012. papers.nips.cc/paper/4824- imagenet-classification-with-deep-convolutional-neural-networks.pdf. Google Scholar
Digital Library
- H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep neural networks. Journal of Machine Learning Research, 10:1-40, 2009. jmlr.org/papers/volume10/larochelle09a/larochelle09a.pdf. Google Scholar
Digital Library
- A. Lavin and S. Gray. Fast algorithms for convolutional neural networks. In Proceedings of CVPR, pages 4013-4021, 2016. arxiv.org/abs/1509.09308.Google Scholar
Cross Ref
- Q. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng. Building high-level features using large scale unsupervised learning. In Proceedings of ICML, pages 81-88, 2012. research.google.com/archive/unsupervised_-icml2012.pdf.Google Scholar
- Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits, 1998. yann.lecun.com/exdb/mnist/.Google Scholar
- M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the Parameter Server. In Proceedings of OSDI, pages 583-598, 2014. www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf. Google Scholar
Digital Library
- C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go using deep convolutional neural networks. arXiv preprint, 1412.6564, 2014. arxiv.org/abs/1412.6564.Google Scholar
- F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In Proceedings of HotOS, HOTOS'15, 2015. www.usenix.org/system/files/conference/hotos15/ hotos15-paper-mcsherry.pdf. Google Scholar
Digital Library
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. In Proceedings of ICLR Workshops Track, 2013. arxiv.org/abs/1301.3781.Google Scholar
- V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Proceedings of NIPS, pages 2204-2212, 2014. papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf. Google Scholar
Digital Library
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 02 2015. dx.doi.org/10.1038/nature14236.Google Scholar
- P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. SparkNet: Training deep networks in Spark. In Proceedings of ICLR, 2016. arxiv.org/abs/1511.06051.Google Scholar
- D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and M. Abadi. Incremental, iterative data processing with timely dataflow. Commun. ACM, 59(10):75-83, Sept. 2016. dl.acm.org/citation.cfm?id=2983551. Google Scholar
Digital Library
- A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint, 1507.04296, 2015. arxiv.org/abs/1507.04296.Google Scholar
- Nervana Systems. Neon deep learning framework, 2016. github.com/NervanaSystems/neon.Google Scholar
- NVIDIA Corporation. NCCL: Optimized primitives for collective multi-GPU communication, 2016. github.com/NVIDIA/nccl.Google Scholar
- R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In Proceedings of ICML, pages 1310-1318, 2013. jmlr.org/proceedings/papers/v28/pascanu13.pdf.Google Scholar
- B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Proceedings of NIPS, pages 693-701, 2011. papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf. Google Scholar
Digital Library
- C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: a compiler and runtime for heterogeneous systems. In Proceedings of SOSP, pages 49-68, 2013. sigops.org/sosp/sosp13/papers/p49-rossbach.pdf. Google Scholar
Digital Library
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. In Cognitive modeling, volume 5, pages 213-220. MIT Press, 1988. www.cs.toronto.edu/~hinton/absps/naturebp.pdf.Google Scholar
- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3):211-252, 2015. arxiv.org/abs/1409.0575. Google Scholar
Digital Library
- A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc. VLDB Endow., 3(1-2):703-710, Sept. 2010. vldb.org/pvldb/vldb2010/papers/R63.pdf. Google Scholar
Digital Library
- I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization and momentum in deep learning. In Proceedings of ICML, pages 1139-1147, 2013. jmlr.org/proceedings/papers/v28/sutskever13.pdf.Google Scholar
- I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Proceedings of NIPS, pages 3104- 3112, 2014. papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural.pdf. Google Scholar
Digital Library
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of CVPR, pages 1-9, 2015. arxiv.org/abs/1409.4842.Google Scholar
Cross Ref
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. arXiv preprint, 1512.00567, 2015. arxiv.org/abs/1512.00567.Google Scholar
- C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. Map-reduce for machine learning on multicore. In Proceedings of NIPS, pages 281-288, 2007. papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf. Google Scholar
Digital Library
- A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of EuroSys, 2015. research.google.com/pubs/archive/43438.pdf. Google Scholar
Digital Library
- O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar as a foreign language. arXiv preprint, 2014. arxiv.org/abs/1412.7449.Google Scholar
- Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google's Neural Machine Translation system: Bridging the gap between human and machine translation. arXiv preprint, 1609.08144, 2016. arxiv.org/abs/1609.08144.Google Scholar
- Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language. In Proceedings of OSDI, pages 1-14, 2008. www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf. Google Scholar
Digital Library
- M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of NSDI, pages 15-28, 2012. https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf. Google Scholar
Digital Library
- M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech processing. In Proceedings of ICASSP, pages 3517-3521, 2013. research.google.com/pubs/archive/40811.pdf.Google Scholar
Cross Ref
Index Terms
TensorFlow: a system for large-scale machine learning
Recommendations
TensorFlow Acceleration on ARM Hikey Board
IWOCL '18: Proceedings of the International Workshop on OpenCLThere is huge demand for targeting complex and large-scale machine learning applications particularly those based on popular actively-maintained frameworks such as TensorFlow and CAFFE to a variety of platforms with accelerators ranging from high-end ...
TensorFlow enabled genetic programming
GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference CompanionGenetic Programming, a kind of evolutionary computation and machine learning algorithm, is shown to benefit significantly from the application of vectorized data and the TensorFlow numerical computation library on both CPU and GPU architectures. The ...




Comments