ABSTRACT
Predictive knowledge discovery is an important knowledge acquisition method. It is also used in the clustering process of data mining. Visualization is very helpful for high dimensional data analysis, but not precise and this limits its usability in quantitative cluster analysis. In this paper, we adopt a visual technique called HOV3 to explore and verify clustering results with quantified measurements. With the quantified contrast between grouped data distributions produced by HOV3, users can detect clusters and verify their validity efficiently.
- Ankerst, M., Breunig, M.M., Kriegel, S.H.P.J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. of ACM SIGMOD Conference, pp. 49-60. ACM Press, New York (1999) Google Scholar
Digital Library
- Ankerst, M., Keim, D.: Visual Data Mining and Exploration of Large Databases. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, Springer, Heidelberg (2001)Google Scholar
- Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Jacob, K., Charles, N., Marc, T. (eds.) Grouping Multidimensional Data, pp. 25-72. Springer, Heidelberg (2006)Google Scholar
Cross Ref
- Chen, K., Liu, L.: iVIBRATE: Interactive visualization-based framework for clustering large datasets. ACM Transactions on Information Systems (TOIS) 24(2), 245-294 (2006) Google Scholar
Digital Library
- Faloutsos, C., Lin, K.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia data sets. In: Proc. of ACM-SIGMOD, pp. 163-174 (1995) Google Scholar
Digital Library
- Fleming, W.: Functions of Several Variables. In: Gehring, F.W., Halmos, P.R. (eds.) 2nd edn. Springer, Heidelberg (1977)Google Scholar
Cross Ref
- Huang, Z., Cheung, D.W., Ng, M.K.: An Empirical Study on the Visual Cluster Validation Method with Fastmap. In: Proc. of DASFAA 2001, pp. 84-91 (2001) Google Scholar
Digital Library
- Huang, Z., Lin, T.: A visual method of cluster validation with Fastmap. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 153-164. Springer, Heidelberg (2000) Google Scholar
Digital Library
- Jain, A., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264-323 (1999) Google Scholar
Digital Library
- Jolliffe Ian, T.: Principal Component Analysis. Springer, Heidelberg (2002)Google Scholar
- Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proc. of ACM SIGKDD Conference, pp. 107-116. ACM Press, New York (2001) Google Scholar
Digital Library
- Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997) Google Scholar
Digital Library
- Kaski, S., Sinkkonen, J., Peltonen, J.: Data Visualization and Analysis with Self-Organizing Maps in Learning Metrics. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 162-173. Springer, Heidelberg (2001) Google Scholar
Digital Library
- Kruskal, J.B., Wish, M.: Multidimensional Scaling. SAGE university paper series on quantitive applications in the social sciences, pp. 7-11. Sage Publications, CA (1978)Google Scholar
- Oliveira, M.C., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: A Survey. IEEE Transaction on Visualization and Computer Graphs 9(3), 378-394 (2003) Google Scholar
Digital Library
- Pampalk, E., Goebl, W., Widmer, G.: Visualizing Changes in the Structure of Data for Exploratory Feature Selection. In: SIGKDD 2003, Washington, DC, USA (2003) Google Scholar
Digital Library
- Sprenger, T.C., Brunella, R., Gross, M.H.: H-BLOB: A Hierarchical Visual Clustering Method Using Implicit Surfaces. In: Proc. of the conference on Visualization 2000, pp. 61-68. IEEE Computer Society Press, Los Alamitos (2000) Google Scholar
Digital Library
- Seo, J., Shneiderman, B.: From Integrated Publication and Information Systems to Virtual Information and Knowledge Environments. In: Hemmje, M., Niederée, C., Risse, T. (eds.) From Integrated Publication and Information Systems to Information and Knowledge Environments. LNCS, vol. 3379, Springer, Heidelberg (2005)Google Scholar
Digital Library
- Shneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 17-28. Springer, Heidelberg (2001) Google Scholar
Digital Library
- Weiss, S.M., Indurkhya, N.: Predictive Data Mining: A Practical Guide. Morgan Kaufmann Publishers, San Francisco (1998) Google Scholar
Digital Library
- Vilalta, R., Stepinski, T., Achari, M.: An Efficient Approach to External Cluster Assessment with an Application to Martian Topography, Technical Report, No. UH-CS-05-08, Department of Computer Science, University of Houston (2005)Google Scholar
- Zhang, K.-B., Orgun, M.A., Zhang, K.: HOV3, An Approach for Cluster Analysis. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 317-328. Springer, Heidelberg (2006) Google Scholar
Digital Library
- Zhang, K.-B., Orgun, M.A., Zhang, K.: A Visual Approach for External Cluster Validation. In: CIDM 2007. Proc. of IEEE Symposium on Computational Intelligence and Data Mining, Honolulu, Hawaii, USA, April 1-5, 2007, pp. 576-582. IEEE Press, Los Alamitos (2007)Google Scholar
Recommendations
Enhanced visual separation of clusters by M-mapping to facilitate cluster analysis
VISUAL'07: Proceedings of the 9th international conference on Advances in visual information systemsThe goal of clustering in data mining is to distinguish objects into partitions/ clusters based on given criteria. Visualization methods and techniques may provide users an intuitively appealing interpretation of cluster structures. Having good visually ...
A Visual Method for High-Dimensional Data Cluster Exploration
ICONIP '09: Proceedings of the 16th International Conference on Neural Information Processing: Part IIVisualization is helpful for clustering high dimensional data. The goals of visualization in data mining are exploration, confirmation and presentation of the clustering results. However, the most of visual techniques developed for cluster analysis are ...
Cluster validation: An integrative method for cluster analysis
BIBMW '09: Proceedings of the 2009 IEEE International Conference on Bioinformatics and Biomedicine WorkshopClustering is a widely used to discover underlying patterns and groups in data and there is a need to validate the quality of clusters generated by the numerous clustering algorithms in use. The need for cluster validitation arises from the fundamental ...




Comments