skip to main content
10.5555/3120747.3120781guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A prediction-based visual approach for cluster exploration and cluster validation by HOV3

Authors Info & Claims
Published:17 September 2007Publication History

ABSTRACT

Predictive knowledge discovery is an important knowledge acquisition method. It is also used in the clustering process of data mining. Visualization is very helpful for high dimensional data analysis, but not precise and this limits its usability in quantitative cluster analysis. In this paper, we adopt a visual technique called HOV3 to explore and verify clustering results with quantified measurements. With the quantified contrast between grouped data distributions produced by HOV3, users can detect clusters and verify their validity efficiently.

References

  1. Ankerst, M., Breunig, M.M., Kriegel, S.H.P.J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. of ACM SIGMOD Conference, pp. 49-60. ACM Press, New York (1999) Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ankerst, M., Keim, D.: Visual Data Mining and Exploration of Large Databases. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, Springer, Heidelberg (2001)Google ScholarGoogle Scholar
  3. Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Jacob, K., Charles, N., Marc, T. (eds.) Grouping Multidimensional Data, pp. 25-72. Springer, Heidelberg (2006)Google ScholarGoogle ScholarCross RefCross Ref
  4. Chen, K., Liu, L.: iVIBRATE: Interactive visualization-based framework for clustering large datasets. ACM Transactions on Information Systems (TOIS) 24(2), 245-294 (2006) Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Faloutsos, C., Lin, K.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia data sets. In: Proc. of ACM-SIGMOD, pp. 163-174 (1995) Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fleming, W.: Functions of Several Variables. In: Gehring, F.W., Halmos, P.R. (eds.) 2nd edn. Springer, Heidelberg (1977)Google ScholarGoogle ScholarCross RefCross Ref
  7. Huang, Z., Cheung, D.W., Ng, M.K.: An Empirical Study on the Visual Cluster Validation Method with Fastmap. In: Proc. of DASFAA 2001, pp. 84-91 (2001) Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Huang, Z., Lin, T.: A visual method of cluster validation with Fastmap. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 153-164. Springer, Heidelberg (2000) Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jain, A., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264-323 (1999) Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jolliffe Ian, T.: Principal Component Analysis. Springer, Heidelberg (2002)Google ScholarGoogle Scholar
  11. Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proc. of ACM SIGKDD Conference, pp. 107-116. ACM Press, New York (2001) Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997) Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kaski, S., Sinkkonen, J., Peltonen, J.: Data Visualization and Analysis with Self-Organizing Maps in Learning Metrics. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 162-173. Springer, Heidelberg (2001) Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kruskal, J.B., Wish, M.: Multidimensional Scaling. SAGE university paper series on quantitive applications in the social sciences, pp. 7-11. Sage Publications, CA (1978)Google ScholarGoogle Scholar
  15. Oliveira, M.C., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: A Survey. IEEE Transaction on Visualization and Computer Graphs 9(3), 378-394 (2003) Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pampalk, E., Goebl, W., Widmer, G.: Visualizing Changes in the Structure of Data for Exploratory Feature Selection. In: SIGKDD 2003, Washington, DC, USA (2003) Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Sprenger, T.C., Brunella, R., Gross, M.H.: H-BLOB: A Hierarchical Visual Clustering Method Using Implicit Surfaces. In: Proc. of the conference on Visualization 2000, pp. 61-68. IEEE Computer Society Press, Los Alamitos (2000) Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Seo, J., Shneiderman, B.: From Integrated Publication and Information Systems to Virtual Information and Knowledge Environments. In: Hemmje, M., Niederée, C., Risse, T. (eds.) From Integrated Publication and Information Systems to Information and Knowledge Environments. LNCS, vol. 3379, Springer, Heidelberg (2005)Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Shneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 17-28. Springer, Heidelberg (2001) Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Weiss, S.M., Indurkhya, N.: Predictive Data Mining: A Practical Guide. Morgan Kaufmann Publishers, San Francisco (1998) Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Vilalta, R., Stepinski, T., Achari, M.: An Efficient Approach to External Cluster Assessment with an Application to Martian Topography, Technical Report, No. UH-CS-05-08, Department of Computer Science, University of Houston (2005)Google ScholarGoogle Scholar
  22. Zhang, K.-B., Orgun, M.A., Zhang, K.: HOV3, An Approach for Cluster Analysis. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 317-328. Springer, Heidelberg (2006) Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Zhang, K.-B., Orgun, M.A., Zhang, K.: A Visual Approach for External Cluster Validation. In: CIDM 2007. Proc. of IEEE Symposium on Computational Intelligence and Data Mining, Honolulu, Hawaii, USA, April 1-5, 2007, pp. 576-582. IEEE Press, Los Alamitos (2007)Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics