10.5555/3305381.3305450guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedings
ARTICLE
Free Access

Sliced Wasserstein kernel for persistence diagrams

ABSTRACT

Persistence diagrams (PDs) play a key role in topological data analysis (TDA), in which they are routinely used to describe topological properties of complicated shapes. PDs enjoy strong stability properties and have proven their utility in various learning contexts. They do not, however, live in a space naturally endowed with a Hilbert structure and are usually compared with non-Hilbertian distances, such as the bottleneck distance. To incorporate PDs in a convex learning pipeline, several kernels have been proposed with a strong emphasis on the stability of the resulting RKHS distance w.r.t. perturbations of the PDs. In this article, we use the Sliced Wasserstein approximation of the Wasserstein distance to define a new kernel for PDs, which is not only provably stable but also discriminative (with a bound depending on the number of points in the PDs) w.r.t. the first diagram distance between PDs. We also demonstrate its practicality, by developing an approximation technique to reduce kernel computation time, and show that our proposal compares favorably to existing kernels for PDs on several benchmarks.

References

  1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., and Ziegelmeier, L. Persistence Images: A Stable Vector Representation of Persistent Homology. Journal Machine Learning Research, 18(8):1-35, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bauer, U. and Lesnick, M. Induced matchings and the algebraic stability of persistence barcodes. Journal of Computational Geometry, 6(2):162-191, 2015.Google ScholarGoogle Scholar
  3. Berg, C., Christensen, J., and Ressel, P. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions. Springer, 1984.Google ScholarGoogle Scholar
  4. Bubenik, P. Statistical Topological Data Analysis using Persistence Landscapes. Journal Machine Learning Research, 16:77-102, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carlsson, G. Topology and data. Bulletin American Mathematical Society, 46:255-308, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  6. Carrière, M., Oudot, S., and Ovsjanikov, M. Stable Topological Signatures for Points on 3D Shapes. In Proceedings 13th Symposium Geometry Processing, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Carrière, M., Cuturi, M., and Oudot, S. Sliced Wasserstein Kernel for Persistence Diagrams. CoRR, abs/1706.03358, 2017.Google ScholarGoogle Scholar
  8. Chang, C. and Lin, C. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L., and Oudot, S. Proximity of persistence modules and their diagrams. In Proceedings 25th Symposium Computational Geometry, pp. 237-246, 2009a. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chazal, F., Cohen-Steiner, D., Guibas, L., Memoli, F., and Oudot, S. Gromov-Hausdorff Stable Signatures for Shapes using Persistence. Computer Graphics Forum, pp. 1393-1403, 2009b. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chazal, F., de Silva, V., and Oudot, S. Persistence stability for geometric complexes. Geometriae Dedicata, pp. 1-22, 2013.Google ScholarGoogle Scholar
  12. Chazal, F., de Silva, V., Glisse, M., and Oudot, S. The structure and stability of persistence modules. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  13. Chen, X., Golovinskiy, A., and Funkhouser, T. A Benchmark for 3D Mesh Segmentation. ACM Trans. Graph., 28(3):73:1-73:12, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. Stability of persistence diagrams. Discrete Computational Geometry, 37(1):103-120, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Edelsbrunner, H. and Harer, J. Computational Topology: an introduction. AMS Bookstore, 2010.Google ScholarGoogle Scholar
  16. Edelsbrunner, Herbert and Harer, John. Persistent homology-a survey. Contemporary mathematics, 453:257-282, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fabio, B. Di and Ferri, M. Comparing persistence diagrams through complex vectors. CoRR, abs/1505.01335, 2015.Google ScholarGoogle Scholar
  18. Guo, Z., Zhang, L., and Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Processing, pp. 1657-1663, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hertzsch, J.-M., Sturman, R., and Wiggins, S. DNA microarrays: design principles for maximizing ergodic, chaotic mixing. In Small, volume 3, pp. 202-218, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E., Matsue, K., and Nishiura, Y. Hierarchical structures of amorphous solids characterized by persistent homology. In Proceedings National Academy of Science, volume 26, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kusano, G., Fukumizu, K., and Hiraoka, Y. Persistence Weighted Gaussian Kernel for Topological Data Analysis. In Proceedings 33rd International Conference on Machine Learning, pp. 2004-2013, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kusano, G., Fukumizu, K., and Hiraoka, Y. Kernel method for persistence diagrams via kernel embedding and weight factor. CoRR, abs/1706.03472, 2017.Google ScholarGoogle Scholar
  23. Kwitt, Roland, Huber, Stefan, Niethammer, Marc, Lin, Weili, and Bauer, Ulrich. Statistical Topological Data Analysis - A Kernel Perspective. In Advances in Neural Information Processing Systems 28, pp. 3070-3078, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, C., Ovsjanikov, M., and Chazal, F. Persistence-Based Structural Recognition. In Proceedings Conference Computer Vision Pattern Recognition, pp. 2003-2010, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Morariu, V., Srinivasan, B., Raykar, V., Duraiswami, R., and Davis, L. Automatic online tuning for fast Gaussian summation. In Advances Neural Information Processing Systems 21, pp. 1113-1120, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., and Huovinen, S. Outex - new framework for empirical evaluation of texture analysis algorithms. In Proceedings 16th International Conference Pattern Recognition, pp. 701-706, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Oudot, S. Persistence Theory: From Quiver Representations to Data Analysis. American Mathematical Society, 2015.Google ScholarGoogle Scholar
  28. Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein barycenter and its application to texture mixing. In International Conference Scale Space Variational Methods Computer Vision, pp. 435-446, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rahimi, A. and Recht, B. Random Features for Large-Scale Kernel Machines. In Advances Neural Information Processing Systems 20, pp. 1177-1184, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R. A Stable Multi-Scale Kernel for Topological Machine Learning. CoRR, abs/1412.6821, 2014.Google ScholarGoogle Scholar
  31. Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R. A Stable Multi-Scale Kernel for Topological Machine Learning. In Proceedings Conference Computer Vision Pattern Recognition, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  32. Robins, V. and Turner, K. Principal Component Analysis of Persistent Homology Rank Functions with case studies of Spatial Point Patterns, Sphere Packing and Colloids. Physica D: Nonlinear Phenomena, 334:1-186, 2016.Google ScholarGoogle Scholar
  33. Santambrogio, Filippo. Optimal transport for applied mathematicians. Birkauser, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  34. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., and Ringach, D. Topological analysis of population activity in visual cortex. Journal of Vision, 8, 2008.Google ScholarGoogle Scholar
  35. The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015. URL http://gudhi.gforge.inria.fr/doc/latest/.Google ScholarGoogle Scholar
  36. Villani, C. Optimal transport : old and new. Springer, 2009.Google ScholarGoogle Scholar
  37. Zomorodian, Afra and Carlsson, Gunnar. Computing persistent homology. Discrete & Computational Geometry, 33(2):249-274, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

(auto-classified)
  1. Sliced Wasserstein kernel for persistence diagrams

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader
    About Cookies On This Site

    We use cookies to ensure that we give you the best experience on our website.

    Learn more

    Got it!