skip to main content
10.5555/976440.976454dlproceedingsArticle/Chapter ViewAbstractPublication Pagesaus-cswConference Proceedingsconference-collections
Article
Free Access

Visualisation and comparison of image collections based on self-organised maps

Published:01 January 2004Publication History

ABSTRACT

Self-organised maps (SOM) have been widely used for cluster analysis and visualisation purposes in exploratory data mining. In image retrieval applications, SOMs have been used to visualise high-dimensional feature space and build indexing structures. In this paper, we extend the use of SOMs for profiling and comparison of image collections, and present empirical results obtained in collection visualisation, visual and quantitative comparison of collections, and a prototype system implementation.

References

  1. Buijs, J. & Lew, M. (1999), Learning visual concepts, in 'Proc. ACM Multimedia 99', pp. 5--7.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carson, C., Thomas, M., Belongie, S. & et al. (1999), Blobworld: A system for region-based image indexing and retrieval, in 'Proc. Int. Conf. Visual Inf. Sys.', pp. 509--516.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Corridoni, J., Del Bimbo, A. & Pala, P. (1999), 'Image retrieval by color semantics', Multimedia Systems7, 175--183.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Deng, D. (2003), Content-based image collection profiling and comparison via self-organised maps, in 'IEEE Conf. on Hybrid Intelligent Systems, to appear'.]]Google ScholarGoogle Scholar
  5. Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, second edn, Prentice Hall.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kaski, S. & Lagus, K. (1996), Comparing self-organizing maps, in J. Vorbruggen & B. Sendhoff, eds, 'Proceedings of ICANN96 International Conference on Artificial Neural Networks', Vol. 1112 of Lecture Notes in Computer Science, Springer, Berlin, pp. 809 -- 814.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Kohonen, T. (1997), Self-organizing Maps, second edn, Springer-Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kohonen, T., Hynninen, J., Kangas, J. & Laaksonen, J. (1996), SOM_PAK: The self-organizing map program package, Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.]]Google ScholarGoogle Scholar
  9. Laaksonen, J., Koskela, M. & Oja, E. (1999), Content-based image retrieval using self-organizing maps, in 'Visual Information and Information Systems', pp. 541--548.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lampinen, J. (1992), On clustering properties of hierarchical self-organizing maps, in I. Aleksander & J. Taylor, eds, 'Artificial Neural Networks, 2', Vol. II, North-Holland, Amsterdam, Netherlands, pp. 1219--1222.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. Naud, A. & Duch, W. (2000), Interactive data exploration using mds mapping, in '5th Conference on Neural Networks and Soft Computing', pp. 255--260.]]Google ScholarGoogle Scholar
  12. Nürnberger, A. & Klose, A. (2002), Improving clustering and visualization of multimedia data using interactive user feedback, in 'Proceedings of IPMU 2002', pp. 993--999.]]Google ScholarGoogle Scholar
  13. Pass, G. & Zabih, R. (1999), 'Comparing images using joint histograms', Multimedia Systems7(3), 234--240.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Rauber, A. & Merkl, D. (1999), The somlib digital library system, in 'Proc. of European Conference on Digital Libraries', pp. 323--342.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ritter, H. (1991), 'Asymptotic level density for a class of vector quantization processes', IEEE Trans. Neural Networks2, 173--175.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Rubner, Y., Tomasi, C. & Guibas, L. (1998), A metric for distributions with applications to image databases, in 'Proc. of IEEE ICCV', pp. 59--66.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Sammon, W. (1969), 'A nonlinear mapping for data analysis', IEEE Transactions on Computers5, 401--409.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Smeulders, A., Worring, M., Santini, S., Gupta, A. & Jain, R. (2000), 'Content-based image retrieval at the end of the early years', IEEE Transaction on Pattern Analysis and Machine Intelligence22(12), 1349--1380.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Smith, J. & Chang, S. (1996), Visualseek: a fully automated content-based image query system, in 'Proc. of ACM Multimedia 96', pp. 87--98.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Tino, P. & Nabhey, I. (2002), 'Hierarchical gtm: constructing localized non-linear projection manifolds in a principled way', IEEE Transactions on Pattern Analysis and Machine Intelligence24(5), 639--656.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Turner, M. (1986), 'Texture discrimination by gabor functions', Biological Cybernetics55, 71--82.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visualisation and comparison of image collections based on self-organised maps

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image DL Hosted proceedings
            ACSW Frontiers '04: Proceedings of the second workshop on Australasian information security, Data Mining and Web Intelligence, and Software Internationalisation - Volume 32
            January 2004
            192 pages

            Publisher

            Australian Computer Society, Inc.

            Australia

            Publication History

            • Published: 1 January 2004

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate204of424submissions,48%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader