ABSTRACT
We present a general construction of a zero-knowledge proof for an NP relation R(x,w) which only makes a black-box use of a secure protocol for a related multi-partyfunctionality f. The latter protocol is only required to be secure against a small number of "honest but curious" players. As an application, we can translate previous results on the efficiency of secure multiparty computation to the domain of zero-knowledge, improving over previous constructions of efficient zero-knowledge proofs. In particular, if verifying R on a witness of length m can be done by a circuit C of size s, and assuming one-way functions exist, we get the following types of zero-knowledge proof protocols.
Approaching the witness length. If C has constant depth over ∧,∨,⊕, - gates of unbounded fan-in, we get a zero-knowledge protocol with communication complexity m·poly(k)·polylog(s), where k is a security parameter. Such a protocol can be implemented in either the standard interactive model or, following a trusted setup, in a non-interactive model.
"Constant-rate" zero-knowledge. For an arbitrary circuit C of size s and a bounded fan-in, we geta zero-knowledge protocol with communication complexity O(s)+poly(k). Thus, for large circuits, the ratio between the communication complexity and the circuit size approaches a constant. This improves over the O(ks) complexity of the best previous protocols.
References
- O. Barkol and Y. Ishai. Secure Computation of Constant-Depth Circuits with Applications to Database Search Problems. In Proc. Crypto 2005, pages 395--411. Google Scholar
Digital Library
- M. Bellare, S. Micali, and R. Ostrovsky. The (True) Complexity of Statistical Zero Knowledge. In Proc. of 22nd STOC, pages 494--502, 1990. Google Scholar
Digital Library
- M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant all distributed computation. In Proc. of 20th STOC, pages 1--10, 1988. Google Scholar
Digital Library
- M. Blum. Coin Flipping by Telephone - A Protocol for Solving Impossible Problems. In Proc. COMPCON 1982: 133--137.Google Scholar
- J. Boyar, G. Brassard and R. Peralta. Subquadratic zero-knowledge. J. ACM, 42(6), pages 1169--1193, 1995. Earlier version in FOCS '91. Google Scholar
Digital Library
- J. Boyar, I. Damgård and R. Peralta. Short Non-interactive Cryptographic Proofs. J. Cryptology 13(4): 449--472 (2000).Google Scholar
Digital Library
- R. Canetti. Security and composition of multiparty cryptographic protocols. In J. of Cryptology, 13(1), 2000.Google Scholar
Digital Library
- D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended abstract). In Proc. of 20th STOC, pages 11--19, 1988. Google Scholar
Digital Library
- H. Chen and R. Cramer. Algebraic Geometric Secret Sharing Schemes and Secure Multi-Party Computations over Small Fields. In Proc. Crypto 2006. Google Scholar
Digital Library
- R. Cramer and I. Damgård. Linear Zero-Knowledge - A Note on Efficient Zero-Knowledge Proofs and Arguments. In Proc. STOC 1997, pages 436--445. Google Scholar
Digital Library
- R. Cramer and I. Damgård. Zero-Knowledge Proofs for Finite Field Arithmetic; or: Can Zero-Knowledge be for Free? In Proc. CRYPTO 1998, pages 424--441. Google Scholar
Digital Library
- I. Damgård and Y. Ishai. Constant-Round Multiparty Computation Using a Black-Box Pseudorandom Generator. In CRYPTO 2005, Springer-Verlag (LNCS 3621), pages 378--394, 2005. Google Scholar
Digital Library
- I. Damgård and Y. Ishai. Scalable Secure Multiparty Computation. In Proc. CRYPTO 2006, pages 501--520. Google Scholar
Digital Library
- S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts. In Communications of the ACM, 28(6):637--647, 1985. Google Scholar
Digital Library
- M. K. Franklin and M. Yung. Communication Complexity of Secure Computation (Extended Abstract). STOC 1992: 699--710. Google Scholar
Digital Library
- O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001. Google Scholar
Digital Library
- O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press, 2004. Google Scholar
Digital Library
- O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. J. Cryptology 9(3): 167--190 (1996)Google Scholar
Digital Library
- S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186--208, 1989. Google Scholar
Digital Library
- O. Goldreich and J. Håstad. On the Complexity of Interactive Proofs with Bounded Communication. Inf. Process. Lett. 67(4): 205--214, 1998. Google Scholar
Digital Library
- O. Goldreich, S. Micali, and A. Wigderson. How to Prove all NP-Statements in Zero-Knowledge, and a Methodology of Cryptographic Protocol Design. In CRYPTO 1986, pages 171--185. Google Scholar
Digital Library
- O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract). In Proc. of 19th STOC, pages 218--229, 1987. Google Scholar
Digital Library
- J. Groth, R. Ostrovsky, and A. Sahai. Perfect Non-interactive Zero Knowledge for NP. In Proc. EUROCRYPT 2006, pages 339--358. Google Scholar
Digital Library
- I. Haitner and O. Reingold. Statistically-Hiding Commitment from Any One-Way Function. These proceedings.Google Scholar
- J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. A Pseudorandom Generator from any One-way Function. SIAM J. Comput. 28(4): 1364--1396 (1999). Google Scholar
Digital Library
- R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-way Permutations. In CRYPTO'88, Springer-Verlag (LNCS 403), pages 8--26, 1988. Google Scholar
Digital Library
- Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-box constructions for secure computation. In Proc. STOC 2006, pages 99--108. Google Scholar
Digital Library
- Y.T. Kalai and R. Raz. Succinct Non-Interactive Zero-Knowledge Proofs with Preprocessing for LOGSNP. In Proc. of 47th FOCS, pages 355--366, 2006. Google Scholar
Digital Library
- Y.T. Kalai and R. Raz. Interactive PCP. Manuscript, 2007.Google Scholar
- J. Kilian. Founding Cryptograph on Oblivious Transfer. In 20th STOC, pages 20--31, 1988. Google Scholar
Digital Library
- J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended Abstract). STOC 1992, pages 723--732. Google Scholar
Digital Library
- J. Kilian and E. Petrank. An Efficient Noninteractive Zero-Knowledge Proof System for NP with General Assumptions. J. Cryptology 11(1), pages 1--27, 1998.Google Scholar
- S. Micali. Computationally Sound Proofs. SIAM Journal on Computing, 30(4):1253--1298, 2000. Google Scholar
Digital Library
- M. Naor. Bit commitment using pseudorandomness. J. of Cryptology, 4:151--158, 1991.Google Scholar
Digital Library
- J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and all applications. SIAM J. Comput., 22(4):838--856, 1993. Preliminary version in Proc. STOC '90. Google Scholar
Digital Library
- M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. In Proc. 33rd STOC, pages 590--599, 2001. Google Scholar
Digital Library
- M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero-Knowledge with Logarithmic Round Complexity. In Proc. of FOCS 2002. Google Scholar
Digital Library
- M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken Computation Laboratory, Harvard U., 1981.Google Scholar
- T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest all majority. In Proc. of 21st STOC, pages 73--85, 1989. Google Scholar
Digital Library
- A. Razborov. Lower bounds for the size of circuits of bounded depth with basis all(AND, XOR). Math. Notes of the Academy of Science of the USSR, all 41(4):333--338, 1987.Google Scholar
- O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of Reducibility between Cryptographic Primitives. TCC 2004: 1--20.Google Scholar
- A. Rosen. A Note on Constant Round Zero Knowledge Proofs for NP. In Proc. 1st TCC, 2004.Google Scholar
Cross Ref
- A. Shamir. How to share a secret. Commun. ACM, 22(6):612--613, June 1979. Google Scholar
Digital Library
- R. Smolensky. Algebric methods in the theory of lower bound for boolean circuit all complexity. In Proc. of the 19h Annual ACM Symposium on the Theory of all Computing (STOC), pages 77--82, 1987. Google Scholar
Digital Library
- A.C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pp. 162--167, 1986.Google Scholar
Digital Library
Index Terms
(auto-classified)Zero-knowledge from secure multiparty computation





Comments