ABSTRACT
This paper presents FreeBee, which enables direct unicast as well as cross-technology/channel broadcast among three popular wireless technologies: WiFi, ZigBee, and Bluetooth. Our design aims to shed the light on the opportunities that cross-technology communication has to offer including, but not limited to, cross-technology cooperation and coordination. The key concept of FreeBee is to modulate symbol messages by shifting the timing of periodic beacon frames already mandatory for wireless standards without incurring extra traffic. Such a generic cross-technology design consumes zero additional bandwidth, allowing continuous broadcast to safely reach mobile and/or duty-cycled devices. A new \emph{interval multiplexing} technique is proposed to enable concurrent broadcasts from multiple senders or boost the transmission rate of a single sender. Theoretical and experimental exploration reveals that FreeBee offers a reliable symbol delivery under a second and supports mobility of 30mph and low duty-cycle operations of under 5%.
References
- Altbeacon. http://altbeacon.org/.Google Scholar
- Cisco aironet 802.11a/b/g datasheet. http://www.cisco.com.Google Scholar
- Crawdad: A community resource for archiving wireless data at dartmouth. http://crawdad.cs.dartmouth.edu/.Google Scholar
- Hostapd. http://hostap.epitest.fi/hostapd/.Google Scholar
- ios: Understanding ibeacon. http://support.apple.com/kb/HT6048/.Google Scholar
- Iperf. https://iperf.fr/.Google Scholar
- Lorcon wireless packet injection lib. https://code.google.com/p/lorcon/.Google Scholar
- Micaz datasheet. http://www.memsic.com/.Google Scholar
- Wireless open-access research platform. http://warpproject.org/trac/.Google Scholar
- N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy Consumption in Mobile Phones: A Measurement Study and Implications for Network Applications. In Proc. ACM IMC, 2009. Google Scholar
Digital Library
- Z. Cao, Y. He, and Y. Liu. L 2: Lazy forwarding in low duty cycle wireless sensor networks. In INFOCOM, pages 1323--1331, 2012.Google Scholar
- C. Carbonelli and U. Mengali. M-ppm noncoherent receivers for uwb applications. Wireless Communications, IEEE Transactions on, 5(8):2285--2294, 2006. Google Scholar
Digital Library
- R. Carroll, R. Cnossen, M. Schnell, and D. Simons. Continua: An interoperable personal healthcare ecosystem. Pervasive Computing, IEEE, 6(4):90--94, 2007. Google Scholar
Digital Library
- K. Chebrolu and A. Dhekne. Esense: communication through energy sensing. In MOBICOM, 2009. Google Scholar
Digital Library
- A. A. D'Amico, U. Mengali, and E. Arias-de Reyna. Energy-detection uwb receivers with multiple energy measurements. Wireless Communications, IEEE Transactions on, 6(7):2652--2659, 2007. Google Scholar
Digital Library
- N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice. Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. In ACM SIGMETRICS Performance Evaluation Review, volume 41, pages 29--40. ACM, 2013. Google Scholar
Digital Library
- Z. Ghassemlooy, A. Hayes, N. Seed, and E. Kaluarachchi. Digital pulse interval modulation for optical communications. Communications Magazine, IEEE, 36(12):95--99, 1998. Google Scholar
Digital Library
- S. Gollakota, F. Adib, D. Katabi, and S. Seshan. Clearing the rf smog: making 802.11n robust to cross-technology interference. In SIGCOMM, 2011. Google Scholar
Digital Library
- T. Hao, R. Zhou, G. Xing, and M. Mutka. Wizsync: Exploiting wi-fi infrastructure for clock synchronization in wireless sensor networks. In RTSS, 2011. Google Scholar
Digital Library
- A. C. Hsu, D. S. L. Wei, and C. C. J. Kuo. Coexistence wi-fi MAC design for mitigating interference caused by collocated bluetooth. IEEE Trans. Computers, 64(2):342--352, 2015.Google Scholar
Digital Library
- A. E. Ingham. The Distribution of Prime Numbers. Cambridge University Press, 1932.Google Scholar
- T. Jin, G. Noubir, and B. Sheng. Wizi-cloud: Application-transparent dual zigbee-wifi radios for low power internet access. In INFOCOM, pages 1593--1601, 2011.Google Scholar
Cross Ref
- W. Li, Y. Zhu, and T. He. Wibee: Building wifi radio map with zigbee sensor networks. In INFOCOM, 2012.Google Scholar
- Z. Li, M. Li, and Y. Liu. Towards energy-fairness in asynchronous duty-cycling sensor networks. TOSN, 10(3):38, 2014. Google Scholar
Digital Library
- C.-J. M. Liang, B. Priyantha, J. Liu, and A. Terzis. Surviving wi-fi interference in low power zigbee networks. In SenSys, 2010. Google Scholar
Digital Library
- R. Mahindra, H. Viswanathan, K. Sundaresan, M. Y. Arslan, and S. Rangarajan. A practical traffic management system for integrated lte-wifi networks. In MOBICOM, pages 189--200, 2014. Google Scholar
Digital Library
- R. C. Qiu, H. Liu, and X. Shen. Ultra-wideband for multiple access communications. Communications Magazine, IEEE, 43(2):80--87, 2005. Google Scholar
Digital Library
- B. Radunovic, R. Chandra, and D. Gunawardena. Weeble: enabling low-power nodes to coexist with high-power nodes in white space networks. In CoNEXT, 2011. Google Scholar
Digital Library
- S. Sen, T. Zhang, M. M. Buddhikot, S. Banerjee, D. Samardzija, and S. Walker. A dual technology femto cell architecture for robust communication using whitespaces. In Dynamic Spectrum Access Networks (DYSPAN), 2012.Google Scholar
Cross Ref
- C. Sengul, M. Bakht, A. F. Harris, T. Abdelzaher, and R. H. Kravets. On the feasibility of high-power radios in sensor networks. SIGMOBILE Mob. Comput. Commun. Rev., 12(1):37\textendash39, 2008. Google Scholar
Digital Library
- D.-s. Shiu and J. M. Kahn. Differential pulse-position modulation for power-efficient optical communication. Communications, IEEE Transactions on, 47(8):1201--1210, 1999.Google Scholar
Cross Ref
- D. Spenza, M. Magno, S. Basagni, L. Benini, M. Paoli, and C. Petrioli. Beyond Duty Cycling: Wake-up Radio with Selective Awakenings for Long-lived Wireless Sensing Systems. In INFOCOM, 2015.Google Scholar
Cross Ref
- K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical study of low-power wireless. ACM Transactions on Sensor Networks (TOSN), 6(2):16, 2010. Google Scholar
Digital Library
- D. Staelin. Fast folding algorithm for detection of periodic pulse trains. Proceedings of the IEEE, 57:724 -- 725, 1969.Google Scholar
- Wireless LAN Working Group. Ieee standard part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE Std 802.11--2012 (Revision of IEEE Std 802.11--2007), pages 1--2793, March 2012.Google Scholar
- Wireless Personal Area Network (WPAN) Working Group. Ieee standard part 15.4: Low-rate wireless personal area networks (lr-wpans). IEEE Std 802.15.4--2011 (Revision of IEEE Std 802.15.4--2006), pages 1--314, Sept 2011.Google Scholar
- J. Wu, H. Xiang, and Z. Tian. Weighted noncoherent receivers for uwb ppm signals. Communications Letters, IEEE, 10(9):655--657, 2006.Google Scholar
Cross Ref
- X. Zhang and K. G. Shin. Enabling coexistence of heterogeneous wireless systems: case for zigbee and wifi. In MobiHoc, 2011. Google Scholar
Digital Library
- X. Zhang and K. G. Shin. Cooperative carrier signaling: harmonizing coexisting wpan and wlan devices. Networking, IEEE/ACM Transactions on, 21(2):426--439, 2013. Google Scholar
Digital Library
- X. Zhang and K. G. Shin. Gap sense: Lightweight coordination of heterogeneous wireless devices. In INFOCOM, 2013.Google Scholar
Cross Ref
- Y. Zhang and Q. Li. Howies: A holistic approach to zigbee assisted wifi energy savings in mobile devices. In INFOCOM, 2013.Google Scholar
Cross Ref
- Z. Zhao, X. Wu, X. Zhang, J. Zhao, and X. Li. Zigbee vs wifi: Understanding issues and measuring performances of their coexistence. In IPCCC, pages 1--8, 2014.Google Scholar
Cross Ref
- R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma. Zifi: wireless lan discovery via zigbee interference signatures. In MOBICOM, 2010. Google Scholar
Digital Library
Index Terms
FreeBee: Cross-technology Communication via Free Side-channel





Comments