10.1145/2789168.2790098acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

FreeBee: Cross-technology Communication via Free Side-channel

Published:07 September 2015Publication History

ABSTRACT

This paper presents FreeBee, which enables direct unicast as well as cross-technology/channel broadcast among three popular wireless technologies: WiFi, ZigBee, and Bluetooth. Our design aims to shed the light on the opportunities that cross-technology communication has to offer including, but not limited to, cross-technology cooperation and coordination. The key concept of FreeBee is to modulate symbol messages by shifting the timing of periodic beacon frames already mandatory for wireless standards without incurring extra traffic. Such a generic cross-technology design consumes zero additional bandwidth, allowing continuous broadcast to safely reach mobile and/or duty-cycled devices. A new \emph{interval multiplexing} technique is proposed to enable concurrent broadcasts from multiple senders or boost the transmission rate of a single sender. Theoretical and experimental exploration reveals that FreeBee offers a reliable symbol delivery under a second and supports mobility of 30mph and low duty-cycle operations of under 5%.

References

  1. Altbeacon. http://altbeacon.org/.Google ScholarGoogle Scholar
  2. Cisco aironet 802.11a/b/g datasheet. http://www.cisco.com.Google ScholarGoogle Scholar
  3. Crawdad: A community resource for archiving wireless data at dartmouth. http://crawdad.cs.dartmouth.edu/.Google ScholarGoogle Scholar
  4. Hostapd. http://hostap.epitest.fi/hostapd/.Google ScholarGoogle Scholar
  5. ios: Understanding ibeacon. http://support.apple.com/kb/HT6048/.Google ScholarGoogle Scholar
  6. Iperf. https://iperf.fr/.Google ScholarGoogle Scholar
  7. Lorcon wireless packet injection lib. https://code.google.com/p/lorcon/.Google ScholarGoogle Scholar
  8. Micaz datasheet. http://www.memsic.com/.Google ScholarGoogle Scholar
  9. Wireless open-access research platform. http://warpproject.org/trac/.Google ScholarGoogle Scholar
  10. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy Consumption in Mobile Phones: A Measurement Study and Implications for Network Applications. In Proc. ACM IMC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Z. Cao, Y. He, and Y. Liu. L 2: Lazy forwarding in low duty cycle wireless sensor networks. In INFOCOM, pages 1323--1331, 2012.Google ScholarGoogle Scholar
  12. C. Carbonelli and U. Mengali. M-ppm noncoherent receivers for uwb applications. Wireless Communications, IEEE Transactions on, 5(8):2285--2294, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Carroll, R. Cnossen, M. Schnell, and D. Simons. Continua: An interoperable personal healthcare ecosystem. Pervasive Computing, IEEE, 6(4):90--94, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Chebrolu and A. Dhekne. Esense: communication through energy sensing. In MOBICOM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. A. D'Amico, U. Mengali, and E. Arias-de Reyna. Energy-detection uwb receivers with multiple energy measurements. Wireless Communications, IEEE Transactions on, 6(7):2652--2659, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice. Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. In ACM SIGMETRICS Performance Evaluation Review, volume 41, pages 29--40. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Z. Ghassemlooy, A. Hayes, N. Seed, and E. Kaluarachchi. Digital pulse interval modulation for optical communications. Communications Magazine, IEEE, 36(12):95--99, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Gollakota, F. Adib, D. Katabi, and S. Seshan. Clearing the rf smog: making 802.11n robust to cross-technology interference. In SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Hao, R. Zhou, G. Xing, and M. Mutka. Wizsync: Exploiting wi-fi infrastructure for clock synchronization in wireless sensor networks. In RTSS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. C. Hsu, D. S. L. Wei, and C. C. J. Kuo. Coexistence wi-fi MAC design for mitigating interference caused by collocated bluetooth. IEEE Trans. Computers, 64(2):342--352, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. E. Ingham. The Distribution of Prime Numbers. Cambridge University Press, 1932.Google ScholarGoogle Scholar
  22. T. Jin, G. Noubir, and B. Sheng. Wizi-cloud: Application-transparent dual zigbee-wifi radios for low power internet access. In INFOCOM, pages 1593--1601, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  23. W. Li, Y. Zhu, and T. He. Wibee: Building wifi radio map with zigbee sensor networks. In INFOCOM, 2012.Google ScholarGoogle Scholar
  24. Z. Li, M. Li, and Y. Liu. Towards energy-fairness in asynchronous duty-cycling sensor networks. TOSN, 10(3):38, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C.-J. M. Liang, B. Priyantha, J. Liu, and A. Terzis. Surviving wi-fi interference in low power zigbee networks. In SenSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Mahindra, H. Viswanathan, K. Sundaresan, M. Y. Arslan, and S. Rangarajan. A practical traffic management system for integrated lte-wifi networks. In MOBICOM, pages 189--200, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. C. Qiu, H. Liu, and X. Shen. Ultra-wideband for multiple access communications. Communications Magazine, IEEE, 43(2):80--87, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Radunovic, R. Chandra, and D. Gunawardena. Weeble: enabling low-power nodes to coexist with high-power nodes in white space networks. In CoNEXT, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Sen, T. Zhang, M. M. Buddhikot, S. Banerjee, D. Samardzija, and S. Walker. A dual technology femto cell architecture for robust communication using whitespaces. In Dynamic Spectrum Access Networks (DYSPAN), 2012.Google ScholarGoogle ScholarCross RefCross Ref
  30. C. Sengul, M. Bakht, A. F. Harris, T. Abdelzaher, and R. H. Kravets. On the feasibility of high-power radios in sensor networks. SIGMOBILE Mob. Comput. Commun. Rev., 12(1):37\textendash39, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D.-s. Shiu and J. M. Kahn. Differential pulse-position modulation for power-efficient optical communication. Communications, IEEE Transactions on, 47(8):1201--1210, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. Spenza, M. Magno, S. Basagni, L. Benini, M. Paoli, and C. Petrioli. Beyond Duty Cycling: Wake-up Radio with Selective Awakenings for Long-lived Wireless Sensing Systems. In INFOCOM, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  33. K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical study of low-power wireless. ACM Transactions on Sensor Networks (TOSN), 6(2):16, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Staelin. Fast folding algorithm for detection of periodic pulse trains. Proceedings of the IEEE, 57:724 -- 725, 1969.Google ScholarGoogle Scholar
  35. Wireless LAN Working Group. Ieee standard part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE Std 802.11--2012 (Revision of IEEE Std 802.11--2007), pages 1--2793, March 2012.Google ScholarGoogle Scholar
  36. Wireless Personal Area Network (WPAN) Working Group. Ieee standard part 15.4: Low-rate wireless personal area networks (lr-wpans). IEEE Std 802.15.4--2011 (Revision of IEEE Std 802.15.4--2006), pages 1--314, Sept 2011.Google ScholarGoogle Scholar
  37. J. Wu, H. Xiang, and Z. Tian. Weighted noncoherent receivers for uwb ppm signals. Communications Letters, IEEE, 10(9):655--657, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  38. X. Zhang and K. G. Shin. Enabling coexistence of heterogeneous wireless systems: case for zigbee and wifi. In MobiHoc, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. X. Zhang and K. G. Shin. Cooperative carrier signaling: harmonizing coexisting wpan and wlan devices. Networking, IEEE/ACM Transactions on, 21(2):426--439, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Zhang and K. G. Shin. Gap sense: Lightweight coordination of heterogeneous wireless devices. In INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  41. Y. Zhang and Q. Li. Howies: A holistic approach to zigbee assisted wifi energy savings in mobile devices. In INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  42. Z. Zhao, X. Wu, X. Zhang, J. Zhao, and X. Li. Zigbee vs wifi: Understanding issues and measuring performances of their coexistence. In IPCCC, pages 1--8, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  43. R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma. Zifi: wireless lan discovery via zigbee interference signatures. In MOBICOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. FreeBee: Cross-technology Communication via Free Side-channel

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MobiCom '15: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking
        September 2015
        638 pages
        ISBN:9781450336192
        DOI:10.1145/2789168

        Copyright © 2015 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 September 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        MobiCom '15 Paper Acceptance Rate 38 of 207 submissions, 18%Overall Acceptance Rate 412 of 2,765 submissions, 15%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      ePub

      View this article in ePub.

      View ePub
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!