skip to main content
10.1145/3460120.3484556acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article
Public Access

QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field

Published: 13 November 2021 Publication History

Abstract

Zero-knowledge (ZK) proofs with an optimal memory footprint have attracted a lot of attention, because such protocols can easily prove very large computation with a small memory requirement. Such ZK protocol only needs O(M) memory for both parties, where M is the memory required to verify the statement in the clear. In this paper, we propose several new constant-round ZK protocols in this setting, which improve the concrete efficiency and, at the same time, enable sublinear amortized communication for circuits with some notion of relaxed uniformity. In the circuit-based model, where the computation is represented as a circuit over a field, our ZK protocol achieves a communication complexity of 1 field element per non-linear gate for any field size while keeping the computation very cheap. We implemented our protocol, which shows extremely high efficiency and affordability. Compared to the previous best-known implementation, we achieve 6x--7x improvement in computation and 3x--7x improvement in communication. When running on intro-level AWS instances, our protocol only needs one US dollar to prove one trillion AND gates (or 2.5 US dollars for one trillion multiplication gates over a 61-bit field). In the setting where part of the computation can be represented as a set of polynomials with a "degree-separated" format, we can achieve communication sublinear to the polynomial size: the communication only depends on the total number of distinct variables in all the polynomials and the highest degree of all polynomials, independent of the number of multiplications to compute all polynomials. Using the improved ZK protocol, we can prove matrix multiplication with communication proportional to the input size, rather than the number of multiplications. Proving the multiplication of two 1024 x 1024 matrices, our implementation, with one thread and 1 GB of memory, only needs 10 seconds and communicates 25 MB.

Supplementary Material

MP4 File (CCS21-fp172.mp4)
Presentation video of the paper 'QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field'

References

[1]
Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 2087--2104. https://doi.org/10.1145/3133956.3134104
[2]
Marshall Ball, Tal Malkin, and Mike Rosulek. 2016. Garbling Gadgets for Boolean and Arithmetic Circuits. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna, Austria, 565--577. https://doi.org/10.1145/2976749.2978410
[3]
Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl. 2021 a. Mac'n'Cheese: Zero-Knowledge Proofs for Arithmetic Circuits with Nested Disjunctions. In CRYPTO 2021, Part I (LNCS ). Springer, Heidelberg, Germany, Santa Barbara, CA, USA.
[4]
Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021 b. Mac'n'Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 92--122. https://doi.org/10.1007/978--3-030--84259--8_4
[5]
Carsten Baum and Ariel Nof. 2020. Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography. In PKC 2020, Part I (LNCS, Vol. 12110), Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas (Eds.). Springer, Heidelberg, Germany, Edinburgh, UK, 495--526. https://doi.org/10.1007/978--3-030--45374--9_17
[6]
Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The Round Complexity of Secure Protocols (Extended Abstract). In 22nd ACM STOC. ACM Press, Baltimore, MD, USA, 503--513. https://doi.org/10.1145/100216.100287
[7]
Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019 a. Scalable Zero Knowledge with No Trusted Setup. In CRYPTO 2019, Part III (LNCS, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 701--732. https://doi.org/10.1007/978--3-030--26954--8_23
[8]
Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. 2019 b. Aurora: Transparent Succinct Arguments for R1CS. In EUROCRYPT 2019, Part I (LNCS, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Darmstadt, Germany, 103--128. https://doi.org/10.1007/978--3-030--17653--2_4
[9]
Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011 (LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg, Germany, Tallinn, Estonia, 169--188. https://doi.org/10.1007/978--3--642--20465--4_11
[10]
Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. 2020. Ligero+: A New Optimized Sublinear IOP. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 2025--2038. https://doi.org/10.1145/3372297.3417893
[11]
Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive composition and bootstrapping for SNARKS and proof-carrying data. In 45th ACM STOC, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM Press, Palo Alto, CA, USA, 111--120. https://doi.org/10.1145/2488608.2488623
[12]
Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. 2021. Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments. In CRYPTO 2021, Part I (LNCS, Vol. 12825), Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 649--680. https://doi.org/10.1007/978--3-030--84242-0_23
[13]
Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. 2016. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting. In EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sé bastien Coron (Eds.). Springer, Heidelberg, Germany, Vienna, Austria, 327--357. https://doi.org/10.1007/978--3--662--49896--5_12
[14]
Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. 2019. Algebraic Techniques for Short(er) Exact Lattice-Based Zero-Knowledge Proofs. In CRYPTO 2019, Part I (LNCS, Vol. 11692), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 176--202. https://doi.org/10.1007/978--3-030--26948--7_7
[15]
Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner. 2020. Efficient Post-quantum SNARKs for RSIS and RLWE and Their Applications to Privacy. In Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020, Jintai Ding and Jean-Pierre Tillich (Eds.). Springer, Heidelberg, Germany, Paris, France, 247--267. https://doi.org/10.1007/978--3-030--44223--1_14
[16]
Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing Vector OLE. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 896--912. https://doi.org/10.1145/3243734.3243868
[17]
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl. 2019 b. Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 291--308. https://doi.org/10.1145/3319535.3354255
[18]
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. 2019 a. Efficient Pseudorandom Correlation Generators: Silent OT Extension and More. In CRYPTO 2019, Part III (LNCS, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 489--518. https://doi.org/10.1007/978--3-030--26954--8_16
[19]
Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 315--334. https://doi.org/10.1109/SP.2018.00020
[20]
Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs from DARK Compilers. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb, Croatia, 677--706. https://doi.org/10.1007/978--3-030--45721--1_24
[21]
Niklas Büscher, Andreas Holzer, Alina Weber, and Stefan Katzenbeisser. 2016. Compiling Low Depth Circuits for Practical Secure Computation. In ESORICS 2016, Part II (LNCS, Vol. 9879), Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas, and Catherine A. Meadows (Eds.). Springer, Heidelberg, Germany, Heraklion, Greece, 80--98. https://doi.org/10.1007/978--3--319--45741--3_5
[22]
Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, Las Vegas, NV, USA, 136--145. https://doi.org/10.1109/SFCS.2001.959888
[23]
Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 1825--1842. https://doi.org/10.1145/3133956.3133997
[24]
Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum and Transparent Recursive Proofs from Holography. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb, Croatia, 769--793. https://doi.org/10.1007/978--3-030--45721--1_27
[25]
Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowledge and Its Applications. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021) (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik, Dagstuhl, Germany.
[26]
Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. 2020. Practical Exact Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings. In ASIACRYPT 2020, Part II (LNCS, Vol. 12492), Shiho Moriai and Huaxiong Wang (Eds.). Springer, Heidelberg, Germany, Daejeon, South Korea, 259--288. https://doi.org/10.1007/978--3-030--64834--3_9
[27]
Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. 2015. Privacy-Free Garbled Circuits with Applications to Efficient Zero-Knowledge. In EUROCRYPT 2015, Part II (LNCS, Vol. 9057), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, Germany, Sofia, Bulgaria, 191--219. https://doi.org/10.1007/978--3--662--46803--6_7
[28]
Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster Zero-Knowledge for Boolean Circuits. In USENIX Security 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, Austin, TX, USA, 1069--1083.
[29]
Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating computation: interactive proofs for muggles. In 40th ACM STOC, Richard E. Ladner and Cynthia Dwork (Eds.). ACM Press, Victoria, BC, Canada, 113--122. https://doi.org/10.1145/1374376.1374396
[30]
Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low Cost Constant Round MPC Combining BMR and Oblivious Transfer. In ASIACRYPT 2017, Part I (LNCS, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer, Heidelberg, Germany, Hong Kong, China, 598--628. https://doi.org/10.1007/978--3--319--70694--8_21
[31]
David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS, Vol. 12107), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb, Croatia, 569--598. https://doi.org/10.1007/978--3-030--45727--3_19
[32]
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-knowledge from secure multiparty computation. In 39th ACM STOC, David S. Johnson and Uriel Feige (Eds.). ACM Press, San Diego, CA, USA, 21--30. https://doi.org/10.1145/1250790.1250794
[33]
Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, Berlin, Germany, 955--966. https://doi.org/10.1145/2508859.2516662
[34]
Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. 2018. Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 525--537. https://doi.org/10.1145/3243734.3243805
[35]
Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. 2014. FleXOR: Flexible Garbling for XOR Gates That Beats Free-XOR. In CRYPTO 2014, Part II (LNCS, Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 440--457. https://doi.org/10.1007/978--3--662--44381--1_25
[36]
Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit: Free XOR Gates and Applications. In ICALP 2008, Part II (LNCS, Vol. 5126), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer, Heidelberg, Germany, Reykjavik, Iceland, 486--498. https://doi.org/10.1007/978--3--540--70583--3_40
[37]
Yashvanth Kondi and Arpita Patra. 2017. Privacy-Free Garbled Circuits for Formulas: Size Zero and Information-Theoretic. In CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 188--222. https://doi.org/10.1007/978--3--319--63688--7_7
[38]
Tal Malkin, Valerio Pastro, and abhi shelat. 2015. The Whole is Greater than the Sum of its Parts: Linear Garbling and Applications. https://simons.berkeley.edu/talks/tal-malkin-2015-06--10 .
[39]
Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Privacy preserving auctions and mechanism design. In Proceedings of the 1st ACM conference on Electronic commerce. 129--139.
[40]
Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. 2012. A New Approach to Practical Active-Secure Two-Party Computation. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 681--700. https://doi.org/10.1007/978--3--642--32009--5_40
[41]
Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. 2019. Distributed Vector-OLE: Improved Constructions and Implementation. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 1055--1072. https://doi.org/10.1145/3319535.3363228
[42]
Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup. In CRYPTO 2020, Part III (LNCS, Vol. 12172), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 704--737. https://doi.org/10.1007/978--3-030--56877--1_25
[43]
Srinath Setty and Jonathan Lee. 2020. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology ePrint Archive, Report 2020/1275. https://eprint.iacr.org/2020/1275 .
[44]
Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and Juan A. Garay (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 71--89. https://doi.org/10.1007/978--3--642--40084--1_5
[45]
Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. 2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 926--943. https://doi.org/10.1109/SP.2018.00060
[46]
Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ristenpart, and abhi shelat. 2019. Blind Certificate Authorities. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 1015--1032. https://doi.org/10.1109/SP.2019.00007
[47]
Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient MultiParty computation toolkit. https://github.com/emp-toolkit .
[48]
Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine: Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits. IEEE Computer Society Press.
[49]
Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret: Fast Extension for Correlated OT with Small Communication. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 1607--1626. https://doi.org/10.1145/3372297.3417276
[50]
Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole - Reducing Data Transfer in Garbled Circuits Using Half Gates. In EUROCRYPT 2015, Part II (LNCS, Vol. 9057), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, Germany, Sofia, Bulgaria, 220--250. https://doi.org/10.1007/978--3--662--46803--6_8
[51]
Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels. 2020 a. DECO: Liberating Web Data Using Decentralized Oracles for TLS. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 1919--1938. https://doi.org/10.1145/3372297.3417239
[52]
Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020 b. Transparent Polynomial Delegation and Its Applications to Zero Knowledge Proof. In 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 859--876. https://doi.org/10.1109/SP40000.2020.00052

Cited By

View all

Index Terms

  1. QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
    November 2021
    3558 pages
    ISBN:9781450384544
    DOI:10.1145/3460120
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 November 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CCS '21
    Sponsor:
    CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security
    November 15 - 19, 2021
    Virtual Event, Republic of Korea

    Acceptance Rates

    Overall Acceptance Rate 1,261 of 6,999 submissions, 18%

    Upcoming Conference

    CCS '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1,100
    • Downloads (Last 6 weeks)85
    Reflects downloads up to 28 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)A Survey of Differential Privacy Techniques for Federated LearningIEEE Access10.1109/ACCESS.2024.352390913(6539-6555)Online publication date: 2025
    • (2025)An Efficient ZK Compiler from SIMD Circuits to General CircuitsJournal of Cryptology10.1007/s00145-024-09531-438:1Online publication date: 1-Jan-2025
    • (2024)ZKSMTProceedings of the 33rd USENIX Conference on Security Symposium10.5555/3698900.3699115(3837-3854)Online publication date: 14-Aug-2024
    • (2024)Two shuffles make a RAMProceedings of the 33rd USENIX Conference on Security Symposium10.5555/3698900.3698981(1435-1452)Online publication date: 14-Aug-2024
    • (2024)Tight ZK CPU: Batched ZK Branching with Cost Proportional to Evaluated InstructionProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690289(3095-3109)Online publication date: 2-Dec-2024
    • (2024)Multi-Verifier Zero-Knowledge Proofs for Any Constant Fraction of Corrupted VerifiersProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670357(4092-4106)Online publication date: 2-Dec-2024
    • (2024)zkPi: Proving Lean Theorems in Zero-KnowledgeProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670322(4301-4315)Online publication date: 2-Dec-2024
    • (2024)Zero-Knowledge Proofs of Training for Deep Neural NetworksProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670316(4316-4330)Online publication date: 2-Dec-2024
    • (2024)RollStore: Hybrid Onchain-Offchain Data Indexing for Blockchain ApplicationsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.343651436:12(9176-9191)Online publication date: Dec-2024
    • (2024)SecBNN: Efficient Secure Inference on Binary Neural NetworksIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.348493619(10273-10286)Online publication date: 2024
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media