skip to main content
research-article

The Agile Success Model: A Mixed-methods Study of a Large-scale Agile Transformation

Published:23 July 2021Publication History
Skip Abstract Section

Abstract

Organizations are increasingly adopting Agile frameworks for their internal software development. Cost reduction, rapid deployment, requirements and mental model alignment are typical reasons for an Agile transformation. This article presents an in-depth field study of a large-scale Agile transformation in a mission-critical environment, where stakeholders’ commitment was a critical success factor. The goal of such a transformation was to implement mission-oriented features, reducing costs and time to operate in critical scenarios. The project lasted several years and involved over 40 professionals. We report how a hierarchical and plan-driven organization exploited Agile methods to develop a Command & Control (C2) system. Accordingly, we first abstract our experience, inducing a success model of general use for other comparable organizations by performing a post-mortem study. The goal of the inductive research process was to identify critical success factors and their relations. Finally, we validated and generalized our model through Partial Least Squares - Structural Equation Modelling, surveying 200 software engineers involved in similar projects. We conclude the article with data-driven recommendations concerning the management of Agile projects.

References

  1. A. Ahmed, S. Ahmad, N. Ehsan, E. Mirza, and S. Z. Sarwar. 2010. Agile software development: Impact on productivity and quality. In International Conference on Management of Innovation & Technology. IEEE, 287–291.Google ScholarGoogle Scholar
  2. D. S. Alberts, J. J. Garstka, and F. P. Stein. 2000. Network Centric Warfare: Developing and Leveraging Information Superiority. Technical Report. DTIC Document.Google ScholarGoogle Scholar
  3. A. Alorwu, N. van Berkel, J. Goncalves, J. Oppenlaender, M. B. Lopez, M. Seetharaman, and S. Hosio. 2020. Crowdsourcing sensitive data using public displays: Opportunities, challenges, and considerations. Person. Ubiq. Comput. (2020). https://books.google.it/books?hl=it&lr=&id=CwvBEKsCY2gC&oi=fnd&pg=PR11&dq=.+W.+Ambler+and+M.+Lines.+2012.+Disciplined+Agile+Delivery:+A+Practitioner%E2%80%99s+Guide+to+Agile+Software+Delivery+in+the+1152+Enterprise.+IBM+Press.&ots=lHT53hT1OF&sig=vMB6rZM2TiL0pLIlMv8GX03fwOk#v=onepage&q&f=false.Google ScholarGoogle Scholar
  4. S. W. Ambler and M. Lines. 2012. Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software Delivery in the Enterprise. IBM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Anning-Dorson. 2018. Customer involvement capability and service firm performance: The mediating role of innovation. J. Bus. Res. 86 (2018), 269–280.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Baltes and P. Ralph. 2020. Sampling in software engineering research: A critical review and guidelines. arxiv:2002.07764 (2020).Google ScholarGoogle Scholar
  7. A. Barcomb, K.-J. Stol, D. Riehle, and B. Fitzgerald. 2019. Why do episodic volunteers stay in FLOSS communities? In International Conference on Software Engineering. IEEE, 948–959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Benedicenti, A. Messina, and A. Sillitti. 2017. iAgile: Mission critical military software development. In International Conference on High Performance Computing & Simulation. IEEE, 545–552.Google ScholarGoogle Scholar
  9. B. Boehm. 2002. Get ready for agile methods, with care. Computer 35, 1 (2002), 64–69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Boehm and R. Turner. 2005. Management challenges to implementing agile processes in traditional development organizations. IEEE Softw. 22, 5 (2005), 30–39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Campanelli and F. Parreiras. 2015. Agile methods tailoring–A systematic literature review. J. Syst. Softw. 110 (2015), 85–100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. W. W. Chin. 1998. The partial least squares approach to structural equation modeling. Mod. Meth. Bus. Res. 295, 2 (1998), 295–336.Google ScholarGoogle Scholar
  13. M.-W. Chung and B. Drummond. 2009. Agile at Yahoo! from the trenches. In AGILE Conference. IEEE, 113–118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Ciancarini, M. Missiroli, and D. Russo. 2019. Cooperative thinking: Analyzing a new framework for software engineering education. J. Syst. Softw. 157 (2019), 110401.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences. Routledge.Google ScholarGoogle Scholar
  16. M. Cohn and D. Ford. 2003. Introducing an agile process to an organization [software development]. Computer 36, 6 (2003), 74–78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Conway. 1968. How do committees invent. Datamation 14, 4 (1968), 28–31.Google ScholarGoogle Scholar
  18. J. Corbin and A. Strauss. 1990. Grounded theory research: Procedures, canons, and evaluative criteria. Qualitat. Sociol. 13, 1 (1990), 3–21.Google ScholarGoogle ScholarCross RefCross Ref
  19. F. R. Cotugno. 2016. Managing increasing user needs complexity within the ITA Army Agile Framework. In International Conference in Software Engineering for Defence Applications. Springer, 1–11.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Creswell. 2013. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage.Google ScholarGoogle Scholar
  21. J. Dibbern, T. Goles, R. Hirschheim, and B. Jayatilaka. 2004. Information systems outsourcing: A survey and analysis of the literature. ACM Sigmis Datab. 35, 4 (2004), 6–102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Dikert, M. Paasivaara, and C. Lassenius. 2016. Challenges and success factors for large-scale agile transformations: A systematic literature review. J. Syst. Softw. 119 (2016), 87–108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Dybå and T. Dingsøyr. 2008. Empirical studies of agile software development: A systematic review. Inf. Softw. Technol. 50, 9-10 (2008), 833–859. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. C. Edmondson and S. E. McManus. 2007. Methodological fit in management field research. Acad. Manag. Rev. 32, 4 (2007), 1246–1264.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. R. Edwards and R. P. Bagozzi. 2000. On the nature and direction of relationships between constructs and measures.Psychol. Meth. 5, 2 (2000), 155.Google ScholarGoogle ScholarCross RefCross Ref
  26. K. Eisenhardt. 1989. Building theories from case study research. Acad. Manag. Rev. 14, 4 (1989), 532–550.Google ScholarGoogle ScholarCross RefCross Ref
  27. K. Eisenhardt and M. Graebner. 2007. Theory building from cases: Opportunities and challenges. Acad. Manag. J. 50, 1 (2007), 25–32.Google ScholarGoogle ScholarCross RefCross Ref
  28. K. El Emam and A. G. Koru. 2008. A replicated survey of IT software project failures. IEEE Softw. 25, 5 (2008), 84–90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. F. Faul, E. Erdfelder, A. Buchner, and A. G. Lang. 2009. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Meth. 41, 4 (2009), 1149–1160.Google ScholarGoogle ScholarCross RefCross Ref
  30. D. J. Fernandez and J. D. Fernandez. 2008. Agile project management agilism versus traditional approaches. J. Comput. Inf. Syst. 49, 2 (2008), 10–17.Google ScholarGoogle Scholar
  31. D. M. Fetterman. 1998. Ethnography. Sage.Google ScholarGoogle Scholar
  32. B. Fitzgerald and D. Howcroft. 1998. Towards dissolution of the IS research debate: From polarization to polarity. J. Inf. Technol. 13, 4 (1998), 313–326.Google ScholarGoogle ScholarCross RefCross Ref
  33. I. Gat. 2006. How BMC is scaling agile development. In AGILE Conference. IEEE, 6–16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Gefen, D. Straub, and M.-C. Boudreau. 2000. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 4, 1 (2000), 7.Google ScholarGoogle ScholarCross RefCross Ref
  35. S. Geisser. 1974. A predictive approach to the random effect model. Biometrika 61, 1 (1974), 101–107.Google ScholarGoogle ScholarCross RefCross Ref
  36. D. Gioia, K. Corley, and A. Hamilton. 2013. Seeking qualitative rigor in inductive research: Notes on the Gioia methodology. Organiz. Res. Meth. 16, 1 (2013), 15–31.Google ScholarGoogle ScholarCross RefCross Ref
  37. D. Gioia, J. Thomas, S. Clark, and K. Chittipeddi. 1994. Symbolism and strategic change in academia: The dynamics of sensemaking and influence. Organiz. Sci. 5, 3 (1994), 363–383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. B. Glaser and A. Strauss. 2017. Discovery of Grounded Theory: Strategies for Qualitative Research. Routledge.Google ScholarGoogle Scholar
  39. B. G. Glaser. 1992. Basics of Grounded Theory Analysis. Vol. 386. Sociology Press.Google ScholarGoogle Scholar
  40. J. H. Goldthorpe. 2000. On Sociology: Numbers, Narratives, and the Integration of Research and Theory. Oxford University Press.Google ScholarGoogle Scholar
  41. D. L. Goodhue, W. Lewis, and R. Thompson. 2012. Does PLS have advantages for small sample size or non-normal data?MIS Quart. 36, 3 (2012), 981–1001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. F. J. Gravetter and L.-A. B. Forzano. 2018. Research Methods for the Behavioral Sciences. Cengage Learning.Google ScholarGoogle Scholar
  43. D. Greening. 2013. Release duration and enterprise agility. In Hawaii International Conference on System Sciences. IEEE, 4835–4841. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. E. Guba. 1981. Criteria for assessing the trustworthiness of naturalistic inquiries. Educ. Commun. Technol. J. 29, 2 (1981), 75–91.Google ScholarGoogle ScholarCross RefCross Ref
  45. J. F. Hair Jr, G. T. M. Hult, C. Ringle, and M. Sarstedt. 2016. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage.Google ScholarGoogle Scholar
  46. J. Hannay, D. Sjoberg, and T. Dyba. 2007. A systematic review of theory use in software engineering experiments. IEEE Trans. Softw. Eng. 33, 2 (2007), 87–107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Henseler, C. M. Ringle, and M. Sarstedt. 2015. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Market. Sci. 43, 1 (2015), 115–135.Google ScholarGoogle ScholarCross RefCross Ref
  48. J. Henseler, C. M. Ringle, and R. R. Sinkovics. 2009. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing. Emerald, 277–319.Google ScholarGoogle Scholar
  49. C. A. Higgins, L. E. Duxbury, and R. H. Irving. 1992. Work-family conflict in the dual-career family. Organiz. Behav. Hum. Decis. Process. 51, 1 (1992), 51–75.Google ScholarGoogle ScholarCross RefCross Ref
  50. J. Highsmith and M. Fowler. 2001. The Agile manifesto. Softw. Devel. Mag. 9, 8 (2001), 29–30.Google ScholarGoogle Scholar
  51. R. Hoda, N. Salleh, J. Grundy, and H. Tee. 2017. Systematic literature reviews in agile software development: A tertiary study. Inf. Softw. Technol. 85 (2017), 60–70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. Hosio, N. van Berkel, J. Oppenlaender, and J. Goncalves. 2020. Crowdsourcing personalized weight loss diets. Computer 53, 1 (2020), 63–71.Google ScholarGoogle ScholarCross RefCross Ref
  53. J. Hulland. 1999. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strat. Manag. J. 20, 2 (1999), 195–204.Google ScholarGoogle ScholarCross RefCross Ref
  54. L. Isabella. 1990. Evolving interpretations as a change unfolds: How managers construe key organizational events. Acad. Manag. J. 33, 1 (1990), 7–41.Google ScholarGoogle Scholar
  55. M. Jovanović, A. Mas, A.-L. Mesquida, and B. Lalić. 2017. Transition of organizational roles in Agile transformation process: A grounded theory approach. J. Syst. Softw. 133 (2017), 174–194.Google ScholarGoogle ScholarCross RefCross Ref
  56. D. Karlstrom and P. Runeson. 2005. Combining agile methods with stage-gate project management. IEEE Softw. 22, 3 (2005), 43–49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. T. R. Kayworth and D. E. Leidner. 2002. Leadership effectiveness in global virtual teams. J. Manag. Inf. Syst. 18, 3 (2002), 7–40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. Khalifa and J. M. Verner. 2000. Drivers for software development method usage. IEEE Trans. Eng. Manag. 47, 3 (2000), 360–369.Google ScholarGoogle ScholarCross RefCross Ref
  59. U. Kulkarni, S. Ravindran, and R. Freeze. 2006. A knowledge management success model: Theoretical development and empirical validation. J. Manag. Inf. Syst. 23, 3 (2006), 309–347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. C. Larman and B. Vodde. 2015. LeSS Framework. https://less.works/.Google ScholarGoogle Scholar
  61. G. Lee and W. Xia. 2010. Toward agile: An integrated analysis of quantitative and qualitative field data on software development agility. MIS Quart. 34, 1 (2010), 87–114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. D. Leffingwell et al. 2015. SAFe–Scaled Agile Framework. https://www.scaledagileframework.com/.Google ScholarGoogle Scholar
  63. T. O. Lehtinen, M. V Mäntylä, J. Vanhanen, J. Itkonen, and C. Lassenius. 2014. Perceived causes of software project failures–An analysis of their relationships. Inf. Softw. Technol. 56, 6 (2014), 623–643. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. W. Lewis, R. Agarwal, and V. Sambamurthy. 2003. Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS Quart. 27, 4 (2003), 657–678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Y. Lincoln and E. Guba. 1985. Naturalistic Inquiry. Sage.Google ScholarGoogle Scholar
  66. M. Lindvall et al. 2004. Agile software development in large organizations. Computer 37, 12 (2004), 26–34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. J. A. Livermore. 2008. Factors that significantly impact the implementation of an agile software development methodology. J. Softw. 3, 4 (2008), 31–36.Google ScholarGoogle ScholarCross RefCross Ref
  68. K. Locke. 1996. Rewriting the discovery of grounded theory after 25 years?J. Manag. Inq. 5, 3 (1996), 239–245.Google ScholarGoogle ScholarCross RefCross Ref
  69. L. S. Lüscher and M. W. Lewis. 2008. Organizational change and managerial sensemaking: Working through paradox. Acad. Manag. J. 51, 2 (2008), 221–240.Google ScholarGoogle ScholarCross RefCross Ref
  70. R. P. Marble. 2003. A system implementation study: Management commitment to project management. Inf. Management 41, 1 (2003), 111–123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. S. McDowell and N. Dourambeis. 2007. British Telecom experience report: Agile intervention–BT’s joining the dots events for organizational change. In International Conference on Extreme Programming and Agile Processes in Software Engineering. Springer, 17–23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. A. Messina, F. Fiore, M. Ruggiero, P. Ciancarini, and D. Russo. 2016. A New Agile paradigm for mission-critical software development. J. Defense Softw. Eng.6 (2016), 25–30.Google ScholarGoogle Scholar
  73. J. Miles. 2014. Tolerance and Variance Inflation Factor. American Cancer Society.Google ScholarGoogle Scholar
  74. H. Mintzberg. 1978. Patterns in strategy formation. Manag. Sci. 24, 9 (1978), 934–948. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. S. C. Misra, V. Kumar, and U. Kumar. 2010. Identifying some critical changes required in adopting agile practices in traditional software development projects. Int. J. Qual. Reliab. Manag. 27, 4 (2010).Google ScholarGoogle Scholar
  76. N. B. Moe, T. Dingsøyr, and T. Dybå. 2008. Understanding self-organizing teams in agile software development. In Australian Conference on Software Engineering. IEEE, 76–85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. A. Munns and B. Bjeirmi. 1996. The role of project management in achieving project success. Int. J. Project Manag. 14, 2 (1996), 81–87.Google ScholarGoogle ScholarCross RefCross Ref
  78. T. Nagel. 1986. The View from Nowhere. Oxford University Press.Google ScholarGoogle Scholar
  79. NATO-RTA. 2004. NATO Code of Best Practice for Command and Control Assessment. Technical Report RTO Technical Report TR-081. NATO.Google ScholarGoogle Scholar
  80. R. R. Nelson and S. G. Winter. 2009. An Evolutionary Theory of Economic Change. Harvard University Press.Google ScholarGoogle Scholar
  81. S. Nerur, R. Mahapatra, and G. Mangalaraj. 2005. Challenges of migrating to agile methodologies. Commun. ACM 48, 5 (2005), 72–78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. I. Nonaka. 1994. A dynamic theory of organizational knowledge creation. Organiz. Sci. 5, 1 (1994), 14–37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. J. Nunnally. 1978. Psychometric Methods. McGraw-Hill.Google ScholarGoogle Scholar
  84. M. Paasivaara, B. Behm, C. Lassenius, and M. Hallikainen. 2018. Large-scale agile transformation at Ericsson: A case study. Empir. Softw. Eng. 23, 5 (2018), 2550–2596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. M. Paasivaara, C. Lassenius, and V. Heikkilä. 2012. Inter-team coordination in large-scale globally distributed scrum: Do scrum-of-scrums really work? In International Symposium on Empirical Software Engineering and Measurement. ACM/IEEE, 235–238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. S. Palan and C. Schitter. 2018. Prolific. A subject pool for online experiments. J. Behav. Exper. Finan. 17 (2018), 22–27.Google ScholarGoogle ScholarCross RefCross Ref
  87. D. Paulhus. 1991. Measurement and control of response bias. In Measures of Personality and Social Psychological Attitudes. Academic Press.Google ScholarGoogle Scholar
  88. E. Peer, L. Brandimarte, S. Samat, and A. Acquisti. 2017. Beyond the turk: Alternative platforms for crowdsourcing behavioral research. J. Experim. Soc. Psychol. 70 (2017), 153–163.Google ScholarGoogle ScholarCross RefCross Ref
  89. K. Petersen and C. Wohlin. 2010. The effect of moving from a plan-driven to an incremental software development approach with agile practices. Empir. Softw. Eng. 15, 6 (2010), 654–693. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. J. Piaget. 1967. Logique et connaissance scientifique. Encyclopédie de la Pléiade (1967).Google ScholarGoogle Scholar
  91. J. K. Pinto and J. E. Prescott. 1990. Planning and tactical factors in the project implementation process. J. Manag. Stud. 27, 3 (1990), 305–327.Google ScholarGoogle ScholarCross RefCross Ref
  92. K. Popper. 2005. The Logic of Scientific Discovery. Routledge.Google ScholarGoogle Scholar
  93. D. Port and M. Korte. 2008. Comparative studies of the model evaluation criterions MMRE and PRED in software cost estimation research. In International Symposium on Empirical Software Engineering and Measurement. 51–60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. M. E Porter. 1997. Competitive strategy. Meas. Bus. Excell. 1, 2 (1997).Google ScholarGoogle Scholar
  95. C. Prause and Z. Durdik. 2012. Architectural design and documentation: Waste in agile development? In International Conference on Software and System Process. IEEE, 130–134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. A. Putta, M. Paasivaara, and C. Lassenius. 2019. How are agile release trains formed in practice? A case study in a large financial corporation. In International Conference on Agile Software Development. Springer, 154–170.Google ScholarGoogle Scholar
  97. H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu. 2019. Going farther together: The impact of social capital on sustained participation in open source. In International Conference on Software Engineering. IEEE, 688–699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Ragioneria Generale dello Stato. 2013–2018. Bilancio della Difesa. Retrieved from https://www.difesa.it/Amministrazionetrasparente/bilandife/Pagine/Bilanciopreventivoeconsuntivo.aspx.Google ScholarGoogle Scholar
  99. P. Ralph et al. 2020. ACM SIGSOFT empirical standards. arxiv:2010.03525 (2020).Google ScholarGoogle Scholar
  100. M. Ramkumar, T. Schoenherr, S. Wagner, and M. Jenamani. 2019. Q-TAM: A quality technology acceptance model for predicting organizational buyers’ continuance intentions for e-procurement services. Int. J. Product. Econ. 216 (2019), 333–348.Google ScholarGoogle ScholarCross RefCross Ref
  101. T. Ravichandran, C. Lertwongsatien, and C. Lertwongsatien. 2005. Effect of information systems resources and capabilities on firm performance: A resource-based perspective. J. Manag. Inf. Syst. 21, 4 (2005), 237–276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. D. Reifer. 2004. Industry software cost, quality and productivity benchmarks. DoD Softw. Tech News 7, 2 (2004), 3–19.Google ScholarGoogle Scholar
  103. C. M. Ringle and M. Sarstedt. 2016. Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industr. Manag. Data Syste. 116, 9 (2016), 1865–1886.Google ScholarGoogle ScholarCross RefCross Ref
  104. C. M. Ringle, S. Wende, and J.-M. Becker. 2015. SmartPLS 3. https://www.smartpls.com/.Google ScholarGoogle Scholar
  105. D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi. 2018. A meta model for information systems quality: A mixed-study of the financial sector. ACM Trans. Manag. Inf. Syst. 9, 3 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. D. Russo, P. H. P. Hanel, S. Altnickel, and N. van Berkel. 2021. The daily life of software engineers during the COVID-19 pandemic. In International Conference on Software Engineering.Google ScholarGoogle Scholar
  107. D. Russo, P. H. P. Hanel, S. Altnickel, and N. van Berkel. 2021. Predictors of well-being and productivity of software professionals during the COVID-19 pandemic–A longitudinal study. Empir. Softw. Eng. 26, 4 (2021), 62. DOI:10.1007/s10664-021-09945-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. D. Russo and K.-J. Stol. 2019. Soft theory: A pragmatic alternative to conduct quantitative empirical studies. In Joint International Workshop on Conducting Empirical Studies in Industry and International Workshop on Software Engineering Research and Industrial Practice. IEEE, 1–4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. D. Russo and K.-J. Stol. 2020. Gender differences in personality traits of software engineers. IEEE Trans. Softw. Eng. In Press (2020), 16.Google ScholarGoogle ScholarCross RefCross Ref
  110. D. Russo and K.-J. Stol. 2021. PLS-SEM for software engineering research: An introduction and survey. Comput. Surv. 54, 4 (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. D. Russo, G. Taccogna, P. Ciancarini, A. Messina, and G. Succi. 2018. Contracting Agile developments for mission critical systems in the public sector. In International Conference on Software Engineering. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. M. Sarstedt, J. Henseler, and C. Ringle. 2011. Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. In Measurement and Research Methods in International Marketing. Emerald, 195–218.Google ScholarGoogle Scholar
  113. K. Schwaber and J. Sutherland. 2020. The Scrum Guide. Scrum Alliance. Technical Report.Google ScholarGoogle Scholar
  114. B. Selic. 2009. Agile documentation, anyone?IEEE Softw. 26, 6 (2009), 11–12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. G. G. Sharma and K.-J. Stol. 2020. Exploring onboarding success, organizational fit, and turnover intention of software professionals. J. Syst. Softw. 159 (2020), 110442.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Galit Shmueli, Soumya Ray, Juan Manuel Velasquez Estrada, and Suneel Babu Chatla. 2016. The elephant in the room: Predictive performance of PLS models. J. Bus. Res. 69, 10 (2016), 4552–4564.Google ScholarGoogle ScholarCross RefCross Ref
  117. G. Shmueli, M. Sarstedt, J. F. Hair, J Cheah, H. Ting, S. Vaithilingam, and C. M. Ringle. 2019. Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. Eur. J. Market. 53, 11 (2019).Google ScholarGoogle ScholarCross RefCross Ref
  118. A. Sillitti and G. Succi. 2005. Requirements engineering for agile methods. In Engineering and Managing Software Requirements. Springer, 309–326.Google ScholarGoogle Scholar
  119. B. Slife and R. Williams. 1995. What’s Behind the Research?: Discovering Hidden Assumptions in the Behavioral Sciences. Sage.Google ScholarGoogle Scholar
  120. B. Snyder and B. Curtis. 2017. Using analytics to guide improvement during an Agile–DevOps transformation. IEEE Softw. 35, 1 (2017), 78–83.Google ScholarGoogle ScholarCross RefCross Ref
  121. K.-J. Stol and B. Fitzgerald. 2018. The ABC of software engineering research. ACM Trans. Softw. Eng. Methodol. 27, 3 (2018), 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. M. Stone. 1974. Cross-validatory choice and assessment of statistical predictions. J. Royal Statist. Soc. Series B (Methodol.) 36, 2 (1974), 111–147.Google ScholarGoogle Scholar
  123. A. Strauss and J. Corbin. 1990. Basics of Qualitative Research: Grounded Theory Procedures and Techniques.Sage.Google ScholarGoogle Scholar
  124. A. Strauss and J. Corbin. 1997. Grounded Theory in Practice. Sage.Google ScholarGoogle Scholar
  125. V. Stray, N. B. Moe, and R. Hoda. 2018. Autonomous agile teams: Challenges and future directions for research. In International Conference on Agile Software Development. 1–5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. J. Sutherland. 2001. Agile can scale: Inventing and reinventing Scrum in five companies. Cutter IT J. 14, 12 (2001), 5–11.Google ScholarGoogle Scholar
  127. D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky. 2006. Agile software testing in a large-scale project. IEEE Softw. 23, 4 (2006), 30–37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. P. E. Tesluk and J. E. Mathieu. 1999. Overcoming roadblocks to effectiveness: Incorporating management of performance barriers into models of work group effectiveness.J. Appl. Psychol. 84, 2 (1999), 200.Google ScholarGoogle ScholarCross RefCross Ref
  129. A. Tiwana and E. Mclean. 2005. Expertise integration and creativity in information systems development. J. Manag. Inf. Syst. 22, 1 (2005), 13–43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. J. Van Maanen. 1979. The fact of fiction in organizational ethnography. Admin. Sci. Quart. 24, 4 (1979), 539–550.Google ScholarGoogle ScholarCross RefCross Ref
  131. B. Vasilescu, A. Capiluppi, and A. Serebrenik. 2014. Gender, representation and online participation: A quantitative study. Interact. Comput. 26, 5 (2014), 488–511.Google ScholarGoogle ScholarCross RefCross Ref
  132. VersionOne. 2019. 13th Annual State of Agile Survey. Retrieved from http://stateofagile.versionone.com/.Google ScholarGoogle Scholar
  133. L. M. Wagner, E. Capezuti, and J. C. Rice. 2009. Nurses’ perceptions of safety culture in long-term care settings. J. Nurs. Scholar. 41, 2 (2009), 184–192.Google ScholarGoogle ScholarCross RefCross Ref
  134. B. C. Wheeler. 2002. NEBIC: A dynamic capabilities theory for assessing net-enablement. Inf. Syst. Res. 13, 2 (2002), 125–146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. 2012. Experimentation in Software Engineering. Springer Science & Business Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. R. K. Yin. 1994. Case study research: Design and methods, applied social research. Meth. Ser. 5 (1994), 312.Google ScholarGoogle Scholar
  137. R. Young and E. Jordan. 2008. Top management support: Mantra or necessity?Int. J. Proj. Manag. 26, 7 (2008), 713–725.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Agile Success Model: A Mixed-methods Study of a Large-scale Agile Transformation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Software Engineering and Methodology
            ACM Transactions on Software Engineering and Methodology  Volume 30, Issue 4
            Continuous Special Section: AI and SE
            October 2021
            613 pages
            ISSN:1049-331X
            EISSN:1557-7392
            DOI:10.1145/3461694
            • Editor:
            • Mauro Pezzè
            Issue’s Table of Contents

            Copyright © 2021 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 23 July 2021
            • Accepted: 1 May 2021
            • Revised: 1 April 2021
            • Received: 1 April 2020
            Published in tosem Volume 30, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format