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ABSTRACT
In this paper, we report on the applicability of combinatorial se-
quence testing methods to the problem of fingerprinting browsers
based on their behavior during a TLS handshake. We created an
appropriate abstract model of the TLS handshake protocol and used
it to map browser behavior to a feature vector and use them to
derive a distinguisher. Using combinatorial methods, we created
test sets consisting of TLS server-side messages as sequences that
are sent to the client as server responses during the TLS handshake.
Further, we evaluate our approach with a case study showing that
combinatorial properties have an impact on browsers’ behavior.
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1 INTRODUCTION
The security and threat landscape of the computer systems of to-
day can be viewed from a macroscopic and a microscopic point
of view. Both views are essential, independent and influence each
other. In this work, we focus on fingerprinting Internet browsers by
analyzing their behavior when they are processing non-standard
response messages from a server during a TLS handshake. These
non-standard messages are derived using combinatorial methods
and no other means than the resulting behavior are used in the
fingerprinting approach. Browsers, a type of end-user software
which is paramount, constitute the central piece of software by
which computing power and the Internet are consumed on a vari-
ety of mobile and classic devices. A lot of effort is spent to annotate
vulnerabilities found not only with the specific software where
the vulnerability was discovered, but to also determine all other
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software that is also affected. In a defensive position, these efforts
usually lead to security advisories where users are then asked to
update the affected software to a version for which this vulnera-
bility has been resolved. From an offensive or penetration testing
position, a list of pairs consisting of a software-vulnerability combi-
nation provides the means for planning concrete penetration tests
on systems. A prerequisite to this step is, however, that sufficient
knowledge is available about the target system so that a detailed
software version-vulnerabilities list can be used effectively. In such
a hypothetical scenario, the process likely begins with a reconnais-
sance phase to determine the exact versions of the software that is
running on the target system. To this end, in this paper, we employ
a combinatorial sequence testing technique in a black-box testing
approach tailored to fingerprint software in use. Specifically, we
assume the role of a classical web server where users of that service
want to connect with a secure connection (HTTP over TLS 1.2 [4]).
Our idea is that by responding with certain TLS handshake mes-
sages (on some connection attempts), the resulting error messages
(if any are sent) can be used to uniquely identify the used browser.
After a successful fingerprinting of the browser, the next attack
steps can be planned with the precise knowledge of the browser
version in use on the target (i.e., exploits specifically developed for
this target). We would like to note that it is possible to create a
database of browser behavior depending on TLS sequences inde-
pendent from any specific target and most importantly, in advance,
and that it can be continuously updated to have it available for later
usage.

Over the last couple of years, there has been a trend to offer more
and more content over HTTPS, for a variety of reasons. Apart from
the previously described use case, browser fingerprinting might be
used in a variety of scenarios, like identifying users or obtaining
information about the type and version of a browser in order to
deliver suitable malware.

Our approach maps the behavior of browsers to feature vectors,
upon which we base our classification. The resulting analysis on
the obtained partitions of all considered browsers can be regarded
as a way to quantify and reason about the similarities in observed
browser behavior.

The goal of this work is to investigate the applicability of com-
binatorial methods to generate artifacts upon which the behavior of
browsers will be evaluated and recorded to be used as underlying
means to build a fingerprinting approach based on it. Specifically,
the research question for this work reads as follows:
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RQ: Can the behavior observed from test sets created by sequence
covering arrays containing TLS server-side messages be used
to fingerprint browsers?

The methods proposed in this paper can be used independently
or in conjunction with existing methods and techniques for browser
fingerprinting. Moreover, the research objective of this paper is
not to increase the efficiency or to address specific limitations of
existing approaches, but to evaluate the applicability of a new ap-
proach based on combinatorial methods to the problem of browser
fingerprinting and as a result to extend the tools and techniques
available in general in the field of fingerprinting.

Wewould like to note that some properties reported by a browser
to a server (for example, its user agent string) are inherently not
trustworthy (since they can be set easily arbitrarily), whereas the
methods proposed in this paper is solely based on the observed
behavior of browsers (i.e., the message-exchange occurring during a
TLS handshake attempt). We expect it to be more difficult to defend
against this type of fingerprinting or to fake the behavior on errors
to imitate the error-behavior of another browser, as mitigation
strategies would have to operate on the level of the underlying TLS
implementation.

Contribution. In particular, this paper makes the following con-
tributions:

• Proposes certain combinatorial sequences as test cases for
fingerprinting browser behavior;

• Presents experimental results of a case study demonstrating
our approach;

This paper is structured as follows. In Section 2 we discuss related
work. We present our approach to fingerprinting of browsers using
combinatorial methods in Section 3 and describe our developed
testing framework in Section 4. In Section 5 we describe the setup
of our case study and analyze the obtained results in Section 6. Last,
Section 8 concludes the paper.

2 RELATEDWORK
Approaches for browser fingerprinting often rely on properties
exposed by the browser about itself and the underlying operating
system. The authors of [5] followed this approach, and in [16] this
methodologywas strengthened by additionally considering browser
plug-ins. In [1], the authors focused on fingerprinting scripts.

Another line of research uses not only properties, but also ca-
pabilities of browsers for developing fingerprinting approaches. A
fingerprinting technique based on the onscreen dimension of font
glyphs was presented in [7]. The rendering of 3D scenes together
with text rendering in a web page on an HTML5 <canvas> element
was used in [12] to base a fingerprinting method upon it. Other
browser capabilities have also been used to create fingerprinting
approaches [22].

In [13], the underlying JavaScript engine was used to devise a
fingerprinting approach. The correlation between feature combina-
tions and identification accuracy has been considered in [20].

In [17], the authors used planning with combinatorial methods
for providing test cases for testing different TLS implementations.

3 COMBINATORIAL METHODS FOR
FINGERPRINTING

In this section, we detail how combinatorial methods arising in
the field of discrete mathematics in conjunction with an abstract
modelling methodology can be used to create test sequences that
enable fingerprinting of browsers. First, we describe the combina-
torial structures employed in this paper, and then we present our
modelling methodology and how the constructed sequences can
be used for testing. While combinatorial methods have been used
in the past in the context of combinatorial security testing [18], in
this paper combinatorial methods are used for the first time as the
underlying means to create a fingerprinting approach.

3.1 Sequence Covering Arrays
Sequence covering arrays (SCAs) [9],[2] are matrices designed to
test software behavior that depends on the order of events, by
ensuring that any t events will occur in every possible t-way order
(allowing interleaving events among each subset of t events). A
sequence covering array, SCA (N , S, t) , is defined as anN ×S matrix
where entries are from a finite set S of s symbols, such that every
t-way permutation of symbols from S occurs in at least one row and
each row is a permutation of the s symbols [9]. The t symbols in
the permutation are not required to be adjacent. That is, for every t-
way arrangement of symbols x1,x2, . . . ,xt , the regular expression
. ∗ x1. ∗ x2 · · · . ∗ xt .∗ matches at least one row in the array.

For example, with six events, a,b, c,d, e, f , one subset of three
events is {a, c, e}, which can be arranged in six possible permuta-
tions. There are1

(6
3
)
= 20 sets of three events, and each can be

arranged in 3! = 6 orders. Using only 10 tests, it is possible to
include all 3-way orders of these six events, as shown in Table 1.
It can be shown that, for a given value of t , the number of tests
required to cover all t-way orders grows with log S . For the case
where t = 2,N = 2 for all values of S , i.e., testing 2-way sequences
never requires more than two tests, regardless of the number of
events.

Sequence covering arrays have been used in a variety of testing
applications, including industrial control systems [3], web applica-
tions [10], cryptographic hash functions [11], and laptop utilities
[9]. They can be constructed using a simple greedy algorithm ap-
proach [9], although search and logic based strategies have been
used as well [6],[8]. Greedy algorithms are generally faster, while
other approaches may produce slightly smaller test arrays. To our
knowledge, they have not been used for device fingerprinting or
other applications outside of conventional software testing.

SCA generation. We implemented the algorithm given in [9] in
the Python 2 programming language [15]. It takes as input the
number of events n and the desired interaction strength t and
returns a SCA for the specified configuration over the alphabet
{0, . . . ,n− 1}. The algorithm follows a greedy strategy, where after
empty initialization of the test sequence set, in each iteration, a
number of test sequences are created randomly, individually scored
by the number of previously uncovered t-way sequences they cover,
and then the highest scoring test sequence is added to the test set

1For two nonnegative integers n and k with k ≤ n we denote with
(n
k
)
the binomial

coefficient. For a positive integer i we denote with i ! the factorial of i .
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Table 1: All 3-event sequences of 6 events.

Test Sequence

1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f
10 f b d a e c

Table 2: Number of tests for generated SCAs.

n t #tests

2 2 2
3 2 2
3 3 6
4 2 2
4 3 8
4 4 24
5 2 2
5 3 10
5 4 28
5 5 120
6 2 2
6 3 10
6 4 36
6 5 156
6 6 720

until all required t-way sequences are covered. The sizes of the
SCAs that this program generated are given in Table 2.

SCA verification. Test sequences used in this work were verified
for coverage using the Combinatorial Sequence Coverage Measure-
ment (CSCM) tool [23],[24]. CSCM was designed to allow testers to
evaluate the sequence coverage of test sets that have not necessarily
been generated to cover sequences. Event sequence testing has long
been known to be important in fields such as communication proto-
cols, and many methods exist to generate sequences that cover the
state transition graphs for protocol testing. Many consumer-level
applications, particularly for web sites and smartphone apps, also
have the potential for complex interactions that are difficult to test
fully. CSCM allows testers to determine the extent to which t-way
sequences are covered in a test set, and to supplement existing tests
as needed to enhance test thoroughness.

3.2 Application to fingerprinting
Now, we explain how to use SCAs in the context of browser fin-
gerprinting. First, we briefly summarize some facts about the TLS

protocol, which is used to establish a secure connection between
two parties.

Transport Layer Security. The transport layer security protocol
(TLS) can be used by browsers to establish a secure connection
with a web server. The setup of this secure channel is achieved via
the exchange of a sequence of messages, where the two parties
negotiate some parameter values for later use. This procedure is
encoded in the handshake protocol within the TLS specification,
and both client and server should follow it. We regard all TLS
messages that are specified for the server as a set of six abstract
events E, consisting of:

E = {ServerHello,Certificate,ECDHEServerKeyExchange, (1a)
ServerHelloDone,ChangeCipherSpec, Finished}. (1b)

If we use the ordering derived from the message exchange in the
TLS specification, then the following mapping of TLS events to
numbers is canonical:

(0) ServerHello
(1) Certificate
(2) ECDHEServerKeyExchange
(3) ServerHelloDone
(4) ChangeCipherSpec
(5) Finished

We denote finite, nonempty sequence over the alphabet E is as-
cending order between angle brackets, for example ⟨0, 3, 5⟩.

Combinatorial Sequence Model and derived test cases. Given a
nonempty subset of cardinality κ of abstract TLS events2 of the set
E, it is possible to construct a SCA for any strength t ∈ {1, . . . ,κ}.
For later evaluation purposes, for any ∅ , E ⊆ E of cardinality3 κ
we created and stored the image of E under the symmetric group
of κ elements in the database. In other words, for any nonempty
subset of sequences, we created all of its permutations and stored
them in the database in the Sequence table and we denote the
corresponding set of all test sequences with S. It follows that we
have in total

6∑
i=1

(
6
i

)
· i! = 1956 (2)

test sequences in the database.
Since we store, for any nonempty subset E of E, all of its permu-

tations in the database, it follows that we can find any SCA defined
over the elements of E in the database (i.e., fetching exactly those
rows from the database which correspond to the rows of the SCA).

For later use, we also fix an enumeration of the set S, that is we
fix a bijection4 from the set {1, . . . , |S|} −→ S.

Given a SCA, we refer to a sequence as a test sequence (i.e., row
in the array) and to the array in its entirety as a test set. Such an
abstract test sequence can now be translated into a concrete TLS
message that will be sent to the client over the network by instan-
tiating its values with default values taken from TLS attacker. We

2It would also be possible to consider not only subsets, but also sub-multisets, i.e.,
by allowing at least one event to appear strictly more than once in the considered
selection. We leave this as future work.
3For a set S , we denote its cardinality with |S |.
4We obtained such an enumeration from the sequence identifiers in the database.
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would like to emphasize that while we are considering permuta-
tions of subsets of the set E, the concrete message values are taken
from TLS attacker5.

4 TESTING FRAMEWORK
In this section, we describe our testing setup of our automated
framework. It is composed of several components and their general
interactions are depicted in Figure 1. The frameworks’ test execu-
tion component uses TLS attacker [19] for sending and receiving
of TLS messages of clients (i.e., browsers). TLS test sequences are
taken from a specified list, created using combinatorial methods.
Subsequently, the logging component of the framework stores an-
notated results for each browser in a dedicated relational database.
In other words, for any given browser, the framework executes the
following steps:

(1) TLS attacker is started as a server and given as input the
XML translation of a test sequence from a set test.

(2) The browser is instrumented to connect via HTTPS to a
specific local url of TLS attacker.

(3) The framework (i.e., the server side in this connection at-
tempt) will respond according to the encoded messages of
the test sequence given in XML format.

(4) The exchange of TLS messages between the client (browser)
and server will continue as long as possible until all mes-
sages from the test case have been sent from the server. The
complete message exchange is recorded.

(5) The recorded message exchange is annotated and stored in
a relational database.

Next, we describe each component in detail.

Test cases. In our experiments we considered all possible injective
ordered sequences S over the alphabet E of length one to six. This
means that, in particular, the set S has as a subset all t-SCAs for
all t ∈ {1, 2, 3, 4, 5, 6}. In Section 6, during the evaluation, we will
make use of this fact and compare the distinguishing capabilities
of various subsets of S, in particular those of SCAs for different
event selections and different strengths. Due to the size advantage
of SCAs compared to the set of all permutations of some fixed set
of elements, it is clear that while for our initial experiments we
were able to work the complete set S, in future extension steps of
an existing analysis database it would be more desirable to follow
a test set augmentation strategy based on higher strength of SCAs
instead of adding all permutations.

Test execution. The test execution component uses TLS attacker6
[19], which is an open source framework that allows the creation
of custom TLS message flows, both from a client and server side.
Since we want to fingerprint clients (i.e., browsers), we use TLS
attacker in the server role. For each abstract test sequence, an XML
encoded TLS handshake sequence is created, which is one of the
input formats of TLS attacker. If available, we start the browsers
in headless mode. The browsers connect to a locally running TLS
attacker. A self-signed root certificate was created and added to the
list of trusted certificates for each browser and the certificate that
is sent by TLS attacker was signed with the private key of the root
5We leave their additional manipulation as future work.
6Release v2.6.

certificate (no intermediate certificate). Also, the certificate sent by
our server has a V3-Extension called subjectaltname. This was
necessary since Google Chrome uses this extension to validate the
certificate and otherwise it would not accept it.

During the handshake, the framework will reply with exactly the
messages in the order specified in the current test sequence with the
concrete message values, except for the certificate, instantiated to
default values provided by TLS attacker7. The ciphersuite was fixed
to TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, as all tested browsers
considered it secure.

The browser process is terminated as soon as the stream (from
TLS attacker) is closed and all the results are stored. This is the
same process for both headless and not headless.

Logging and database. While instrumenting TLS attacker, we
parse its comprehensive output. This output includes detailed infor-
mation about sent and received TLS messages. It also outputs TLS
alert messages and prints out exceptions that happened during
execution (stored in the field ExceptionHandshake), for example
if the browser closed the socket or if TLS attacker failed to parse a
received message. The tests also send an HTTPS-response to the
browser, so it is possible to record exceptions that happened af-
ter the handshake (stored in the field ExceptionPostHandshake),
when data should be sent over the now secure channel. We added
this information to make it possible to have more data in the feature
vectors used as distinguishers (e.g., no exception is thrown during
the handshake, but the socket is closed as soon as TLS attacker tries
to send data).

This logging information, together with the tested client (i.e.,
browser) is then stored in a SQLite database [14]. Moreover, the
database also contains tables with

• the list of browsers, their paths and command line options
for how to start them, respectively;

• the set of TLS events E;
• a workflow skeleton that is populated with the saved TLS
messages;

• the list of all considered test sequences S.
We give some examples for results obtained in Table 3, as they

are stored in the database.

Walk through example. We illustrate our approach and the test
case execution with an example. Consider a five event selection out
of the set E where the event Certificate is omitted, i.e. we choose
the following sequence

⟨ServerHello, Finished, ServerHelloDone, (3a)
ChangeCipherSpec,ECDHEServerKeyExchange⟩ (3b)

= ⟨0, 5, 3, 4, 2⟩ (3c)

built from these events. The corresponding XML encoded sequence
is depicted in Listing 1.

1 <?xml v e r s i o n = " 1 . 0 " encod ing= "UTF−8 " s t a nd a l on e = "
yes " ?>

2 <workf lowTrace >
3 <Rece ive >
4 <expec tedMessages >

7https://github.com/RUB-NDS/TLS-Attacker/blob/master/TLS-Core/src/main/
resources/default_config.xml

https://github.com/RUB-NDS/TLS-Attacker/blob/master/TLS-Core/src/main/resources/default_config.xml
https://github.com/RUB-NDS/TLS-Attacker/blob/master/TLS-Core/src/main/resources/default_config.xml
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Figure 1: Overview of the fingerprinting process.

Table 3: Excerpt from the Results table.

ID ReceivedMsgs1 ReceivedMsgs2 AlertMessage ExceptionHandshake ExceptionPostHandshake br_id Seq_id

6 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE 1 2

761 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Connection reset by peer: socket write error 1 153

3881 CLIENT_HELLO java.net.SocketException: Connection reset by peer:
socket write error

java.net.SocketException: Connection reset by peer: socket write error 1 777

3882 CLIENT_HELLO java.net.SocketException: Software caused connection abort: socket write error 2 777

3883 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Software caused connection abort: socket write error 3 777

3884 CLIENT_HELLO java.net.SocketException: Software caused connection abort: socket write error 4 777

3885 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Software caused connection abort: socket write error 5 777

5 < C l i e n tH e l l o / >
6 </ expec tedMessages >
7 </ Rece ive >
8 <Send >
9 <messages >
10 < S e r v e rHe l l o / >
11 < F i n i s h e d / >
12 <Serve rHe l loDone / >
13 <ChangeCipherSpec / >
14 </ messages >
15 </ Send >
16 <Rece ive >
17 <expec tedMessages >
18 <ECDHClientKeyExchange / >
19 <ChangeCipherSpec / >
20 < F i n i s h e d / >
21 </ expec tedMessages >
22 </ Rece ive >
23 <Send >
24 <messages >
25 <ECDHEServerKeyExchange / >
26 </ messages >
27 </ Send >
28 <Send >
29 <messages >

30 <HttpsResponse >
31 </ HttpsResponse >
32 </messages >
33 </ Send >
34 </ workf lowTrace >

Listing 1: TLS 1.2 altered handshake workflow.

For this example, we consider the case of testing the behavior of
the browser Firefox. It is started in headless mode pointing to a
local resource from the execution framework using the following
command:
C:\Program Files\Mozilla Firefox\firefox.exe

-headless -url https://localhost:5555

Upon execution, this test sequence led to the following exchange
of TLS messages:

(1) ClientHello sent from Firefox.
(2) The framework sends the following messages:

⟨ServerHello, Finished, ServerHelloDone, (4a)
ChangeCipherSpec⟩ (4b)

(3) The client (Firefox in this case) responds and the response is
identified by the execution framework as a TLS alert mes-
sage of type UNEXPECTED_MESSAGE. Furthermore, we obtain
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from TLS attacker an exception of type
java.net.SocketException: Connection reset by peer:
socket write error.

(4) Finally, an annotated version of the above test execution
result is stored in the database.

5 CASE STUDY
In this section, we describe in detail the sequences used as test sets
and the tested browsers and their version.

The objective of this case study is to provide initial experimental
results about the capabilities of the executed methods for finger-
printing browsers. To this end, we ran the tests on a prevalent
operating system for major browser vendors.

Test sets. As already mentioned in Section 3.2, our automated
approach made it possible to work with the complete set S con-
taining all permutations for all nonempty subset selections of TLS
messages.

Independently, we used the generated SCAs (see Section 3.1)
to obtain for every compatible selection of events a list of test se-
quence IDs. These IDs were used to obtain a subset of rows from the
Sequence table in the database corresponding to the instantiated
abstract SCA with the TLS messages selection.

Since we can find these SCAs as subsets of S, by executing all
test sequences of S against all browsers, we have also tested all
SCAs of interest.

Browsers. In total, we tested five browsers for a case study, con-
sisting of the following:

(1) Mozilla Firefox, version 64.0.0.6914;
(2) Opera, version 57.0.3098.106;
(3) Google Chrome, version 71.0.3578.98;
(4) Microsoft Internet Explorer, version 11.0.17134.1;
(5) Microsoft Edge, version 11.00.17134.471.

Framework setup. All experiments were performed on Windows
10 Pro, 64-bit Build 17134.472 Version 1803 running inside a virtual
machine created with VMware Workstation 12 Pro 12.5.9 build-
7535481. During the testing, all browsers connected to a locally
running instance of TLS attacker.

6 EVALUATION
In this section, we present our results from running the experiments
described in Section 5 and the theoretical criteria upon which we
base our analysis. We explain how we instantiate feature vectors
for abstract analysis in Section 6.1 and subsequently remark on how
we compare them in Section 6.2. Afterwards, we elaborate on the
results obtained in Section 6.3. The evaluation was performed with
a program written in Perl v5.24.1 [21], which queried the results
database and carried out the necessary steps for the analysis of our
results.

Results show that the methods presented in this paper are effec-
tive for distinguishing between browser classes. That is, a very large
number of the SCA tests were able to determine the browser type as
belonging to one of the three categories: {Firefox}, {Google Chrome,
Opera}, {Microsoft Internet Explorer,Microsoft Edge}.

6.1 Feature vector definition
For given browser and nonempty set of test sequences S ⊆ S, we
define a feature vector as follows:

• For each s ∈ S , let rs be the result of executing test sequence s
against the given browser (queried from the results database),
stored as an array of strings. Note that the length of this array
is uniform for all browsers and all test sequences in the set
S.

• Let fv denote an array of length |S |, where each entry is
a reference to the array rs , in ascending order according
to the chosen enumeration of the set S. The result can be
interpreted as a two-dimensional array where the the first
position of a two-dimensional index pair corresponds to the
enumeration identifier of a test sequence and the second
position to a column in the Result table schema.

• We define the array fv as feature vector for the given browser
and set S of sequences.

We exemplify our definition of feature vectors with an example.
Consider the browser Mozilla Firefox together with the following
set of S ⊆ S of test sequences:

S = {⟨Certificate⟩, ⟨Finished,ChangeCipherSpec, ServerHello⟩}
(5)

The result of these two test sequences executed against Firefox
(which has browser_id equal to one) are depicted in Table 3, where

• the sequence ⟨Certificate⟩ has Sequence_id equal to two
and the corresponding result is stored in the Result table
with ID equal to six.

• the sequence ⟨Finished,ChangeCipherSpec, ServerHello⟩ has
Sequence_id equal to 153 and the corresponding result is
stored in the Result table with ID equal to 761.

The resulting feature vector fv has length two. The first entry points
to an array of strings with the respective values shown in Table 3
for ID equal to six8:

("CLIENT_HELLO"|"AlertMessage"|"UNEXPECTED_MESSAGE"|""|"")
(6)

The second entry points to an array of strings with the respective
values shown in Table 3 for ID equal to 7619:

("CLIENT_HELLO"|"AlertMessage"|"UNEXPECTED_MESSAGE"|""| (7a)
"java.net.SocketException: (7b)

Connection reset by peer: socket write error") (7c)

6.2 Classification of feature vectors
Since we are interested in finding nonempty subsets of the set S
where we can observe different behavior of the tested browsers, we
now give a precise definition of how the term different behavior is
to be understood in this paper. Suppose we are given a nonempty
subset S ⊆ S and two different browsers, then we say that they

8The characters ( and ) denote the start and end of the array, respectively; the double
high quotes delimit strings; and the character | is used as array element separator.
9See Footnote 8.
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exhibit different behavior with respect to S , if and only if, their
respective feature vectors differ10.

For five browsers, there are ten possible pairwise comparisons
between their behaviors (i.e., pairwise comparisons between their
respective feature vectors). We use these pairwise comparisons to
define an equivalence relation on the set of all browsers. For fixed
nonempty set S ⊆ S, two browsers are equivalent, if and only
if, they exhibit the same behavior. In other words, two browsers
are members of the same equivalence class, if and only if, they
exhibit the same behavior for the set S . Due to our interest in
fingerprinting browsers according to their behavior using test cases
created with combinatorial methods, we are especially interested
in analyzing the resulting partitions for different nonempty sets of
test sequences.

6.3 Analysis of results
Firstly, wemake some general observations on our results in Section
6.3.1. Then, we proceed with our analysis for groups of sequences
of the same length for lengths from 1 up to 6 in Section 6.3.2 until
Section 6.3.7. For i ∈ {1, 2, 3, 4, 5, 6} we denote with Si the subset
of S consisting of exactly those sequences of length i . Note that in
the case of n = t , the notions of the image of a set of cardinality n
under the full permutation group and a SCA of strength n result in
the same set of sequences.

6.3.1 General observations. For each individual test sequence in
the set S, we have seen at least the following pairwise equalities
between behavior of two specific selections of two browsers:

• The browsers Microsoft Internet Explorer and Microsoft
Edge exhibit the same behavior.

• The browsers Google Chrome and Opera exhibit the same
behavior.

It follows that:
• Both of these selections of two browsers will have the same
behavior for any nonempty subset of the set S.

• For both of these selections of two browsers, for any non-
empty set of test sequences, the resulting partition will have
at most three classes.

• The approach for fingerprinting presented in this paper is
currently not able to distinguish browsers within these two
browser pairs.

• The result that those two browser-pair selections always
exhibit the same behavior is not surprising, since they in-
ternally use closely related libraries for handling TLS hand-
shakes.

It is possible to make the above statements more precise, which
we state in the form of an explicit description of the appearing
partitions. For each test sequence, the number of equivalence classes
in the corresponding partition is an element of the set

C = {1, 2, 3}, (8)

and for each number in the set C there is at least one test sequence
where the partition corresponding to this sequence (i.e., singleton

10Equality of feature vectors is to be understood as canonical equality between two-
dimensional arrays with the same dimensions; i.e., in each position equality for the
respective strings holds.

of test sequence selection) has exactly this number of equivalence
classes.

For each number in the set C, we give now a more detailed
description for the occurring partitions.

• Number of equivalence classes equal to one: All browsers
have the same behavior and the corresponding partitions
are equal. This partition occurs seven times.

• Number of equivalence classes equal to two: There are two
different partitions:
– One partition consisting of the two classes:
(1) {Firefox,Google Chrome,Opera},
(2) {Microsoft Internet Explorer,Microsoft Edge}
occurring 22 times.

– The other partition consisting of the two classes:
(1) {Firefox},
(2) {Microsoft Internet Explorer,Microsoft Edge,

Google Chrome,Opera},
occurring only once.

• Number of equivalence classes equal to three: We denote
this unique class as P3 and the classes for the respective
partitions are equal to:

(1) {Firefox},
(2) {Google Chrome,Opera},
(3) {Microsoft Internet Explorer,Microsoft Edge}.
This case occurs 1926 times.

After this analysis of all possible singletons of test sequence
selections, next we analyze test sets for the same length and of
cardinality at least two, in particular SCAs for different strengths.

6.3.2 Sequences of length 1. There are six selections of one event.

⟨ServerHello⟩: In this case, the resulting partition contains only
one class with five elements, i.e., all browsers behave the same way.

⟨Certificate⟩, ⟨ECDHEServerKeyExchange⟩, ⟨ServerHelloDone⟩,
⟨ChangeCipherSpec⟩, ⟨Finished⟩: All of these cases resulted in the
same partition of the set of all browsers, which has the following
structure:

• Class I: {Microsoft Internet Explorer,Microsoft Edge}
• Class II: {Firefox,Google Chrome,Opera}

In the case of singleton selections of test sequences of length
one, the concepts of test sequence, SCA of strength one and image
under the full permutation group all coincide. We conclude that
different singleton selections (i.e., different selections of one event),
have different differentiation capabilities.

6.3.3 Sequences of length 2. For all subset selections of cardinal-
ity two, for our generated SCAs of strength two, the result is the
partition P3.

6.3.4 Sequences of length 3. For all subset selections of cardinality
three, for all our generated SCAs of strengths t ∈ {2, 3}, the result
is the partition P3.

6.3.5 Sequences of length 4. For all subset selections of cardinality
four, for all our generated SCAs of strength t ∈ {2, 3, 4}, the result
is the partition P3.
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6.3.6 Sequences of length 5. For all subset selections of cardinality
five, for all our generated SCAs of strength t ∈ {2, 3, 4, 5}, the result
is the partition P3.

6.3.7 Sequences of length 6. For all subset selections of cardinality
six, for all our generated SCAs of strength t ∈ {2, 3, 4, 5, 6}, the
result is the partition P3.

6.4 Interpretation of results
An analysis of the results in the previous evaluation shows that
testing with the selection of only one test sequence of only one
event leads to the weakest results in terms of differentiation. It is
interesting to note that for some selections of only individual test
sequences consisting of at least two events, the resulting partition
is equal to P3. This case even occurs for about 98% of all individual
event sequence selections. When considering test sequence selec-
tions of cardinality at least two, the resulting partition is also always
equal to P3 and the best distinguishing capabilities obtained in this
paper are reached. In particular, whenever there are at least two
events appearing in the test sequence and a SCA is chosen as test
set, then the best possible partition P3 is obtained.

Based on these results, we can answer the research question re-
garding the applicability of combinatorial methods to the problem
of fingerprinting browsers in the affirmative.

7 THREATS TO VALIDITY
In this section, we comment on possible threats to validity of this
work. It is clear that the performed case study is limited, since it only
contains five browsers all running on Windows 10 Pro. Another
threat stems from the fact that we relied on TLS attacker to act as
the server side when the clients (i.e., browsers) attempted the TLS
handshake. Likewise, although the goal of the paper is to investigate
the applicability of combinatorial methods for fingerprinting, it is
clear that a comparison of the proposed methods in this paper
with existing approaches for browser fingerprinting would help to
properly classify and position this work into the existing literature
and methodologies for browser fingerprinting. We plan to conduct
such a comparison in future work.

8 CONCLUSION AND FUTUREWORK
In this paper, we used combinatorial methods to create finite non-
empty sequences of TLS messages to be used as the underlying
means for a method of browser fingerprinting. An experimental
evaluation shows that test sets of TLS sequences where the defined
order of events compared to the specification is changed, lead to
differentiation capabilities.

However, our results also showcase that a refined modelling is
needed to strengthen the approach. This model development could
be done in parallel to the extension of our set of tested browsers.
As briefly mentioned before, the additional manipulation of TLS
message contents and the extension to also consider multi-sets of
events are directions for future research. Finally, any difference
in observed behavior could be analyzed from the point of view
of conformance testing, linking browser fingerprinting to prob-
lems in the field of conformance testing like undefined behavior or
conformance quantification.
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